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Summary

We present a system reliability approach to rock wedge stability analysis. Different failure modes
are considered, and a disjoint cut-set formulation is employed – with each cut-set corresponding
to a different failure mode – to explore the system aspects of the problem, so that the reliability of
the system is assessed by computing the probability of failure of the slope under each failure
mode. An example case is used to demonstrate different approaches to compute the reliability of
the slope design. Our results show that an approximation to the ‘‘exact’’ probability of failure –
given by Monte Carlo simulation results – may be obtained using a first order approximation to
the failure domain, and that linear programming techniques may be used to obtain bounds of
the probability of failure. Furthermore, we identify the most likely failure mode, and we ex-
plore the sensitivity of the computed probabilities to changes in the random variables considered.
The results indicate that the reliability results are quite sensitive to the geometry of the wedge.
Changes in water conditions are also found to have a significant impact on the computed
probabilities, while changes in unit weight of the rock have a considerably smaller effect on the
reliability.
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1. Introduction

The characterization of rock masses for engineering applications is subject to uncer-

tainties due to the limited data that are typically available during site characterization,

and due to inherent variability of properties within the rock mass. Accordingly, the

problem of decision-making under uncertainty has become a topic of increasing in-

terest for the rock engineering community. Within that context, hazard assessment and

the quantification of the probability of undesirable events – i.e., failure probability – is



a significant aspect of the decision-making process, and it has been widely discussed

in the literature (Tamimi et al., 1989; Duzgun et al., 2003; Low, 1997).

Wedge failures are probably the most common and general case (Hoek and Bray,

1981) within the wide variety of mechanisms leading to failure of rock slopes (see

e.g., Goodman and Kieffer, 2000). Hence, the problem has been extensively treated in

the literature (Hoek and Bray, 1981; Warburton, 1981; Goodman, 1989; Wittke, 1990;

Nathanail, 1996; Low, 1997; Wang and Yin, 2002). Here we explore the system

aspects (Hudson, 1992; Jimenez-Rodriguez et al., 2006) of the problem of analysis

of stability of rock wedges using limit equilibrium methods, and we develop a prob-

abilistic approach in which state-of-the-art reliability methods (e.g., Ditlevsen and

Madsen, 1996; Ambartzumian et al., 1998; Song and Der Kiureghian, 2003) are

employed to compute the probability of failure of rock wedges in a systematic and

quantitative way.

2. Wedge Stability Model

Unstable wedges may be formed in rock slopes cut by at least two sets of discontinuities

upon which sliding can occur (Hoek and Bray, 1981). In this paper we address the

problem of stability of individual wedges in rock slopes. We use the closed-form equa-

tions presented by Low (1997) for stability of tetrahedral wedges in slopes with an

inclined upper ground surface that dips in the same direction as the slope face (see

Fig. 1). Four different failure modes may be defined for a wedge (Goodman, 1989;

Low, 1997): Sliding along the line of intersection of both planes forming the block

(failure mode 1), sliding along plane 1 only (failure mode 2), sliding along plane 2

only (failure mode 3), and a ‘‘floating’’ type of failure (failure mode 4). ‘‘Floating’’

failure could be induced by high water pressures or in-situ stresses, by directly applied

forces (e.g., the pull of a cable anchored within the wedge), or by a combination of

both. It needs to be kept in mind that such failure modes represent a limited set of

possibilities leading to failure of rock slopes (Goodman and Kieffer, 2000), and that

the addition of more joints to the system could define additional blocks that may need

Fig. 1. Tetrahedral wedge model
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to be considered. (Naturally, the same approach could be extended to other cases; e.g.,

see Jimenez-Rodriguez et al. (2006) for an application to the analysis of plane failure

in rock slopes.)

As an example, we present the conditions that need to be fulfilled for occurrence of

failure mode 1. The conditions for occurrence of the remaining failure modes can be

derived in an equivalent way, and in the interest of brevity they are not listed herein.

(See Low (1997) for details.)

2.1 Failure Mode 1

The closed-form expression for the factor of safety for a wedge under failure mode 1

is given by Low (1997) as:

FS ¼
�
a1 �

b1Gw

S�

�
tan�1 þ

�
a2 �

b2Gw

S�

�
tan�2 þ 3b1

c1

�h
þ 3b2

c2

�h
: ð1Þ

Equation (1) is only valid under the condition that there is contact on both planes –

i.e., the terms preceding tan�1 and tan�2 must be positive:�
a1 �

b1Gw

S�

�
> 0; ð2Þ

and �
a2 �

b2Gw

S�

�
> 0; ð3Þ

where a1, a2, b1, b2 are parameters that depend on the geometry of the slope (i.e.,

defined as a function of angles �1, �1, �2, �2, �, �, and �, as shown in Fig. 1 and

explained in Table 1; for details see Low (1997)); c1 and c2 represent the cohesion on

planes 1 and 2; �1 and �2 represent the corresponding friction angles; Gw is a pore-

pressure parameter (Gw ¼ H=2h for pyramidal water pressure distributions, as con-

sidered herein); and, finally, S� ¼ �=�w is the specific density of the rock.

In addition, the following kinematical constraints have to be fulfilled:

�<�<�; ð4Þ
indicating the formation of removable wedges that can move toward the free face

(Goodman and Shi, 1985).

Table 1. Description of angles that define the geometry of the wedge

Angle Description

�1 Dip angle of plane 1
�2 Idem for plane 2
�1 Horizontal angle (measured within the wedge) between the strike line of plane 1 and the

(horizontal) line of intersection between the upper ground surface and the slope face
�2 Idem for plane 2
� Inclination (i.e., dip angle) of slope face
� Inclination (i.e., dip angle) of upper ground surface
� Inclination (i.e., plunge angle) of the line of intersection between planes 1 and 2
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3. System Reliability

The reliability analysis is performed by computing the probability of failure of remov-

able wedges due to each of the four failure modes considered. In particular, we use a

disjoint cut-set formulation, in which the performance of the system (i.e., the stability

of the wedge) is modelled as a series assembly of disjoint parallel sub-systems. That

is, failure of the system under each failure mode occurs when all the components in

the corresponding parallel sub-system fail, and the total probability of failure of the

slope may be obtained as the sum of probabilities of failure of the individual failure

modes. In Fig. 2 we show the general system representation of the wedge stability

model presented in Section 2, and in Table 2 we list the physical interpretation of the

limit state functions, as well as the definitions of the limit state functions correspond-

ing to failure mode 1 (see Section 2.1). (We assume that component i fails if the

corresponding limit state function, gi, is less than zero.)

The probability of failure of each component is computed by solving the following

integral:

Pf ¼ PðgðxÞ4 0Þ ¼
ð
gðxÞ4 0

f ðxÞdx; ð5Þ

where f ðxÞ is the probability density function (PDF) of the input variables of the

stability model.

Fig. 2. Disjoint cut-set system formulation of rock wedge stability

Table 2. Interpretation of limit state functions in the system modeling
failure of the wedge

LSF Interpretation

g1 �FS� 1 Wedge unstable with contact on both planes
g2 � a1 � b1Gw=S� Contact on plane 1

g3 � a2 � b2Gw=S� Contact on plane 2
g4 Wedge unstable with contact on plane 1 only
g5 ‘‘Floating’’ conditions on plane 2
g6 Wedge unstable with contact on plane 2 only
g7 ‘‘Floating’’ conditions on plane 1
g8 ��� � Kinematic admissibility
g9 � �� � Kinematic admissibility
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A number of methods have been developed to obtain the probability content of the

failure domain in Eq. (5). Monte Carlo (MC) simulation methods have been used in

the literature (Tamimi et al., 1989), together with approximations such as the first

order reliability method (FORM) (Bjerager, 1990). Based on the FORM analysis of

the components in each failure mode (i.e., parallel sub-system), a first order approx-

imation to their probability of failure may be obtained as (Ditlevsen and Bjerager,

1989):

Pf � P

� \
i 2 Ck

�i 4 vi

�
¼ �ð��Ck

;RÞ; ð6Þ

where Ck is the cut-set corresponding to the failure mode of interest, �Ck
is the vector

of reliability indices of the components, and R is the correlation matrix between the

components. The probability in Eq. (6) may be efficiently computed using the SCIS

algorithm (Ambartzumian et al., 1998).

Finally, bounds of the probability of failure of the system may be obtained using,

for instance, the linear programming (LP) approach proposed by Song and Der Kiur-

eghian (2003). This approach is based on the solution of the optimization problem of a

linear objective function subjected to linear constraints. The strength of the LP bounds

is that they have been shown to be the narrowest possible bounds for any given level of

information on component probabilities.

4. Example Analysis

We consider an example case in which the input variables of the wedge stability model

have the statistical distributions presented in Table 3, where � indicates the mean of

the distribution, � is the standard deviation, and a and b indicate lower and upper

bounds. Cohesion values are chosen to be lognormally distributed because the log-

normal distribution is often used to model cohesion (Duzgun et al., 2003). Beta dis-

tribution is used to model friction angles because it is flexible and versatile; it is also

Table 3. Statistical distributions of input parameters in the stability model

Variable Type Parameters

p1 p2 p3 p4

c1 ½kPa� Lognormala 22 4
�1 ½deg� Betab 30 5 22 38
c2 ½kPa� Lognormala 25 4
�2 ½deg� Betab 32 5 24 36
Gw Normala 0.5 0.12
�1 ½deg� Uniformc 47 53
�1 ½deg� Uniformc 58 66
�2 ½deg� Uniformc 45 51
�2 ½deg� Uniformc 16 24
�r ½kN=m3� Normala 26 2

a p1 ¼ �, p2 ¼ �.
b p1 ¼ �, p2 ¼ �, p3 ¼ a, p4 ¼ b.
c p1 ¼ a, p2 ¼ b.

Rock Wedge Stability Analysis Using System Reliability Methods 423



bounded, avoiding problems that may arise when using unbounded distributions to

model friction angles. Since no previous information on the distribution of the angles

defining wedge geometry is known, the uniform distribution is used to model �1, �1,

�2, and �2. Finally, the normal distribution is used to model the distributions of water

pressure and unit weight. Random variables in the model are considered to be inde-

pendent of each other; c1 and �1, as well as c2 and �2 are, however, considered to be

negatively correlated (with a correlation coefficient of 	 ¼ �0:3), to model common

shear test results in which the cohesion drops as the friction angle rises, and vice-versa

(Hoek, 2000). In addition, the following deterministic parameters are considered in the

analyses: � ¼ 70 ½deg�, � ¼ 0 ½deg�, and �w ¼ 9:8 ½kN=m3�.
Figure 3 shows the probability of failure of the slope as a function of wedge size.

Monte Carlo simulation and FORM approximation results have been computed using

program CALREL (Liu et al., 1989), whereas the first order approximation to the

system’s probability of failure (see Eq. (6)) has been computed using our own com-

puter implementation of the SCIS algorithm. (Our program is built on top of the GNU

Scientific library (Galassi et al., 2003), and it is available upon request.) Finally, we

also show the LP bounds computed in this case. In general, the uni-modal bounds (i.e.,

bounds computed using probabilities of single components only) are too wide to be of

any practical interest. Bi-modal bounds (i.e., bounds based on probabilities of inter-

sections of two components) are, however, much narrower, providing significantly

improved estimates. As expected, the ‘‘exact’’ solution (i.e., the Monte Carlo solution)

is contained within the computed LP bounds.

Figure 4 shows the relative influence (using ‘‘exact’’ MC results) that each failure

mode has on the overall failure probability of the slope. Useful information for slope

design may be obtained from this analysis; in this case, for instance, failure mode 4

(i.e. corresponding to ‘‘floating’’ conditions) is the failure mode contributing most to

Fig. 3. Probability of failure of the slope for different wedge sizes
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the probability of failure, indicating that assuring an adequate drainage should be a

priority during design and construction of the slope.

Table 4 shows the sensitivity of the reliability results to changes in the random

variables. x� is the design point, corresponding to the transformation of the most

likely failure point in the standard normal space back to the original space; and �
represents the sensitivities of the computed reliability results to changes in the random

variables x (the larger the absolute value of the component of � corresponding to

random variable xi, the higher the sensitivity with respect to changes in random

variable xi). These results show that, for instance, the limit state functions in the

failure mode are mainly sensitive to changes in the geometry of the wedge. (Note the

high values in the sensitivity vector, �, corresponding to variables �1, �1, �2, and �2).

That is, changes in the geometry of the wedge are shown to have a significant influ-

ence on the stability of the wedge and, accordingly, a good structural characterization

Fig. 4. Relative significance of failure modes

Table 4. Results of FORM analysis on components in failure mode 1

Variable g1ðxÞ4 0 g2ðxÞ4 0 g3ðxÞ4 0

x� � x� � x� �

c1 ½kPa� 2.2Eþ 01 �0.02 2.2Eþ 01 0.00 2.2Eþ 01 0.00
�1 ½deg� 3.9Eþ 01 �0.05 3.0Eþ 01 0.00 3.0Eþ 01 0.00
c2 ½kPa� 2.5Eþ 01 �0.06 2.5Eþ 01 0.00 2.5Eþ 01 0.00
�2 ½deg� 3.5Eþ 01 �0.01 3.5Eþ 01 0.00 3.5Eþ 01 0.00
Gw 5.0E� 01 0.08 5.0E� 01 0.01 5.0E� 01 0.04
�1 ½deg� 4.8Eþ 01 0.46 5.6Eþ 01 0.65 4.5Eþ 01 �0.35
�1 ½deg� 5.6Eþ 01 �0.50 4.8Eþ 01 �0.58 5.7Eþ 01 �0.17
�2 ½deg� 4.7Eþ 01 0.70 3.9Eþ 01 �0.46 5.0Eþ 01 0.90
�2 ½deg� 1.6Eþ 01 �0.17 1.5Eþ 01 �0.11 1.5Eþ 01 �0.19
�r ½kN=m3� 2.6Eþ 01 0.01 2.6Eþ 01 �0.00 2.6Eþ 01 �0.01
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of discontinuities is of paramount importance for an adequate assessment of wedge

stability. Among the remaining random variables, the reliability results are most sen-

sitive to changes in the water pressure parameter, Gw, while changes in the unit weight

of the rock appear to be the least significant factor.

5. Conclusions

We present a methodology for the assessment of stability of wedges in rock slopes

under uncertain information. System aspects of the problem are considered, and we

model the stability of the wedge using a disjoint cut-set formulation, in which disjoint

parallel sub-systems are used to represent the different failure modes of the slope.

An example case consisting of a tetrahedral wedge is used to demonstrate different

approaches to compute the reliability of a slope design. The ‘‘exact’’ reliability results

can be computed using Monte Carlo simulation methods; an approximation to the

probability of failure may also be computed using a first order approximation to the

failure domain, in which FORM information is employed. In addition, our results

show that adequate bounds on the failure probability of the system may be obtained

using linear programming techniques, as long as sufficient information on component

reliabilities is considered.

Finally, additional information of interest in the design process may be obtained

using the approach presented in this paper. For example, in the case presented here,

the most likely failure mode corresponded to ‘‘floating’’ of the wedge, indicating the

importance of an adequate drainage in the design of this particular slope. In addition,

the reliability results were found to be highly sensitive to variations in the geometry of

the wedge (indicating the importance of an adequate structural characterization of the

rock mass) and to variations in water level conditions, whereas variations in the unit

weight of the slope were found to have a significantly smaller influence on the prob-

ability of failure.
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