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Rock squeezing is a time-dependent process associated to the plastic flow (creep) of rock masses subjected to
pressures exceeding a limiting shear stress. It usually produces large convergences that can have a significant
negative influence on the budget and time needed to successfully complete a tunneling project. We propose
a novel empirical method for prediction of squeezing conditions in rock tunnels which is based on the
application of the theory of linear classifiers to an extensive database of well-documented squeezing case
histories from tunnels in the Himalayas and Himalayan foothills that has been compiled from the literature.
Our method allows us to propose new class-separation lines to estimate the occurrence of squeezing
conditions (squeezing vs no-squeezing), and it also allows to compute probabilities of squeezing for different
combinations of tunnel depth and rock mass quality. Results show that, as expected, the probability of
squeezing significantly increases with depth and also that the quality of the rock mass has a crucial influence
on squeezing probability, with probabilities of squeezing changing by significant amounts given a single-step
variation within the Q system. They also show that our newly proposed squeezing class-separation line
presents good results that improve the predictive capabilities of previously available criteria.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Rock squeezing is produced by plastic flow (creep) of rock masses
subjected to stresses that exceed a limiting shear stress, leading to
material failure, and typically producing large convergences around
tunnels that could continue for long periods of time (Barla, 1995;
Dalgic, 2002). Such large convergences are commonly associated to
difficulties during (and after) construction that normally require non-
standard excavation and support methods; re-excavation of specific
sections where excessive convergences reduce the section below
minimum acceptable limits; or both (Schubert, 1996; Hoek, 1999;
Dalgic, 2002; Hoek and Guevara, 2009; Barla, 2010). They could also
produce long term problems associated to floor heave or support
failures (Barla and Pelizza, 2000); or even, in extreme circumstances,
the abandonment of the tunnel project. In addition, squeezing ground
conditions are an important factor for TBM design (Robbins, 1997;
Ramoni and Anagnostou, 2010), and squeezing can also produce the
entrapment of TBMs (Shang et al., 2004; Hoek and Guevara, 2009),
especially if they are forced to stop due to mechanical breakdowns or
to insufficient thrust capabilities.

The term squeezing, however, has been often vaguely-defined in
the literature (Panet, 1996); for instance, Barla (2001) presents a
review with nine different definitions of squeezing available in the
rock mechanics literature, and other definitions have been proposed
as well (Einstein, 1996; Panet, 1996; Dalgic, 2002). In general,
definitions of squeezing include the ideas of (i) non-elastic time-
dependant behavior (see e.g., Gioda and Cividini, 1996); (ii) failure of
the rock mass due to concentration of stresses around the excava-
tion; and (iii) large convergences, or large loads on the support, or
both (Kovari and Staus, 1996; Panet, 1996). Conceptually, the term
squeezing is different from swelling; volume increase of the ground
due to water absorption or to other physical–chemical processes
(Terzaghi and Terzaghi, 1946; Einstein, 1996). However, since both
processes often occur simultaneously in real cases (Einstein, 1996),
alternative definitions of squeezing that make no distinction on the
nature of the motion have been proposed as well (Aydan et al., 1996).

The threshold for “large” convergences has not always been
defined in a consistent way either, although a normalized conver-
gence value of 1% is commonly considered to be the threshold for
squeezing occurrence, as proposed by several authors and verified by
field data (Sakurai, 1983; Chern et al., 1998). Such deformation level
usually corresponds to a limited plastic radius around the excavation
(Goel et al., 1995b; Chern et al., 1998; Hoek, 2001) so that, in most
cases, the tunnel does not suffer problems associated to excessive
deformations. In any case, convergences larger than 1% should only be
considered as an indicator of the initiation of likely construction
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problems, as many tunnels have been successfully completed after
allowing strains much higher than 1% (Hoek, 2001).

Squeezing problems are particularly common in relatively deep
tunnels in weak rock, although significant convergences can also occur
in shallower tunnelswithin veryweak or over-stressed rockmasses due
to, for instance, tectonic or topographic effects (Shrestha and Broch,
2008; Hoek and Marinos, 2010; Hudson, 2010). Deep excavations in
hard rock, on the other hand, tend to produce problems associated to
rock bursting (Hoek, 2001; Hoek and Marinos, 2010), although
significant time-dependant behavior and squeezing (Malan and Basson,
1998; Malan, 1999) have also been observed in some cases.

It is therefore clear that squeezing can have a significant negative
influence on the budget and time needed to successfully complete a
tunneling project. For that reason, there have been significant efforts
to develop tools for squeezing prediction and for estimation of
convergences in tunnels considering rheological and time-dependant
models. For instance, Sulem et al. (1987) presented an analytical
solution for prediction of (future) time-dependent displacements in
tunnels that consider the rheological effects of the rock mass and also
the effects of the rate of face advance. Such solution has been later
employed to anticipate changes in geological conditions ahead of the
face (Sellner and Steindorfer, 2000; Schubert and Grossauer, 2004), as
well as to estimate the relative importance of the rheological behavior
of the rock with respect to the rate of advance of the tunnel face
(Kontogianni et al., 2006).

Analytical solutions to compute creep deformations in squeezing
rock have also been proposed and, for instance, (Fritz, 1984)
presented a solution for axisymmetric tunnels in elasto-viscoplastic
media. Similarly, there has been a recent strong interest on the
application of time-dependant constitutive models to model tunnel
behavior. Sterpi and Gioda (2009) employed a visco-elasto-plastic
constitutive model to account for the influence of tertiary creep on
tunnel closure (and, hence, on squeezing behavior); whereas
Debernardi and Barla (2009) proposed a stress-hardening elastic-
viscous-plastic constitutive law which has been shown to reproduce
well the squeezing behavior of real tunnels (Barla, 2010). Other
rheological laws have also been proposed; for instance, Phienwej et al.
(2007) employed hyperbolic and power creep laws to predict time-
dependent closure of circular tunnels considering the effect of support
types and installation location, whereas Guan et al. (2008) present the
implementation of a rheological model that considers the degradation
of Mohr–Coulomb parameters (damage) with time and as function of
a stress coefficient that indicates “distance to failure”.

Such methods, however, often rely on the “up-scaling of properties”
therefore introducing significant uncertainties into the analysis (they
are calibrated from laboratory tests, which are not always representa-
tive of rock mass conditions; (Sterpi and Gioda, 2009)). They may also
need complex calibration procedures (Guan et al., 2009) that, in
addition, are based on convergence data that is only available after
tunnel construction (Zhifa et al., 2001; Boidy et al., 2002). This aspect, in
conjunctionwith the complexity of themodels involved, greatly reduces
the a-priori capabilities for squeezingprediction of suchmethods and, in
addition, it makes their application difficult prior to tunnel construction
and reducing their usefulness during the planning stage. Furthermore,
and despite the rapid advances in numerical tools available to the
average tunnel designer, they are probably still not robust enough (and
validated enough) to be routinely employed in real tunneling projects
(Hoek and Marinos, 2010).

Based on the above, and due to their simplicity and ease of use,
empirical methods still play a crucial role for squeezing prediction
(Shrestha, 2005), although alternative methods for uncertainty
analysis based on Monte Carlo simulation have also been proposed
(Panthi and Nilsen, 2007). (See below for a review of empirical
methods for squeezing prediction.) In this paper, we propose a novel
empirical method for prediction of squeezing conditions in rock
tunnels in the Himalayas and Himalayan foothills. Our method relies

on the statistical analysis (using the theory of linear classifiers) of an
extensive database of well-documented Himalayan case histories that
has been compiled from the literature, which allows us to estimate the
occurrence of squeezing conditions (squeezing vs no-squeezing) and
also to compute probabilities of squeezing for tunnels in such
conditions.

The main factors of the squeezing definitions presented above
have been considered for the construction of the database employed
in our analysis, so that squeezing occurrences predicted by our
method would be expected to correspond to situations in which
relatively large deformations (say, more than 1% for an unlined
tunnel) could occur, therefore producing problems during or after
(from weeks to a few years) construction, unless special construction
methods are employed to cope with squeezing ground. Note,
however, that no intention is made to model the time-dependant
aspect of the problem or, in other words, to compute the evolution of
convergences with time.

2. A review of empirical methods for squeezing prediction

Manymethods for empirical squeezing prediction are based on the
definition of competence factors that relate (some indicators of) rock
mass strength and stress at the tunnel depth. For instance Jethwa et al.
(1984) and Hoek and Marinos (2000) predicted tunnel squeezing
based on the ratio between rock mass uniaxial strength, σcm, and
lithostatic stress, σ0=γrH; as an example, Hoek (2001) proposes that
values of σcm/σ0b0.35 are likely to produce squeezing (as defined by
normalized convergences of more than 1% in unsupported tunnels).

Other empirical methods for squeezing prediction are based on the
use of geomechanical classifications (RMR or Q systems). Such
classifications have a long tradition of application in rock tunneling,
and it is therefore usual to record RMR or Q values at the face as the
tunnel advances; such records, in conjunction to observations of
squeezing occurrence (or not occurrence), can be used to develop
empirical relations for squeezing prediction. In that sense, for instance,
Singh et al. (1992) presented a well-known empirical correlation to
anticipate squeezing conditions based on theQ-value of the rockmass,
in which tunnels deeper thanH=350Q1/3 (withH in meters) could be
expected to present squeezing. Similarly, given the practical difficul-
ties for prediction of the Stress Reduction Factor (SRF) in the Q system,
Goel et al. (1995b) eliminated the influence of SRF on Q, and, to that
end, they defined a Rock Mass Number as N=(RQD/Jn)(Jr/Ja)Jw. (Note
that N is equal to Q when SRF=1). They also incorporated the
influence of tunnel dimensions by considering the product HB0.1,
whereH is the tunnel depth and B is the tunnelwidth (both inmeters).
(For an in-depth review of these and other methods for empirical
squeezing prediction; see Singh et al., 1997 and Shrestha, 2005.)

Other researchers have also proposed estimates of degrees of
squeezing intensity based on estimates of tunnel deformations. For
instance, Aydan et al. (1993) transformed the competence factor
concept into a strains concept (based on the analogy between the
stress–strain response of rock in the laboratory and within the rock
mass around tunnels), and they proposed several levels of squeezing
based on the ratio between the peak tangential strain at the tunnel
boundary and the elastic strain. Similarly, Hoek and Marinos (2000)
(see also (Hoek, 2001)) proposed several levels of squeezing based on
the strains produced by the excavation of an unsupported tunnel in
rock masses with different σcm/p0 values; Sakurai (1997) defined
warning levels against excessive deformation based on the concept of
critical strain; and Singh et al. (2007) have recently proposed the use
of their squeezing index (defined as expected strain divided by critical
strain) to predict levels of squeezing potential in tunnels.

In this work we propose new empirical equations for squeezing
prediction (and for estimation of the associated uncertainties) that are
based on the use of statistical classification. To that end, we have
compiled an extensive database of well-documented case histories
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from tunnels in the Himalayas and Himalayan foothills that are
available from the literature. Starting from an original set of case
histories, we filtered the data to obtain a total of 62 data points that
were later employed in the statistical analysis. The reason to perform
such filtering was to assure that the data are reliable (using only data
fromwell-documented case histories published in prestigious sources);
original (i.e., to avoid theuse of the samecasehistory several times); and
independent (i.e., we only use data that is the product of direct mea-
surement and/or estimation and, for instance, we avoid the use of
published empirical correlations to obtain Q values from RMR—or vice
versa). The complete database of case histories employed in this work is
reproduced in Appendix A (Table 2).

3. Linear classifiers for squeezing prediction

Classifiers are commonly employed in statistics andmachine learning
to help with the labeling of observations; that is, given one observation
(or occurrence) of a set of variables X for which the classifier is trained,
they help to categorize such observation by assignment of a discrete-
valued random variable Y (“class label”). Such classification can be
performed in a probabilistic way, so that the label of each observation is
assigned to the outcome of Y that maximizes the conditional probability
of the class label given the observation (i.e., it maximizes P(Y|X)). Once
that we have computed the conditional probabilities of each possible
label considered, it is clear that such conditional probabilities can also be
employed as a measurement of the uncertainties of the assignments,
therefore providing additional information to the designer that could be
useful, for instance, in tunnel risk analyses.

For the sake of completeness, herewe present a brief introduction to
the theory of classification, with a particular attention to discriminative
models based on logistic regression. As we will see, this approach
introduces linear decision boundaries between the different class labels,
and it is therefore referred to as a “linear classifier”. Our discussion
below is mainly based on the work of Jordan (2003); additional useful
references are Duda et al. (2001) and Mitchell (2005).

As mentioned above, given a set of random variables that compose
the input vector of observations X=(X1,…,Xn), we need to compute
the conditional probabilities of the class labels Y given the observeddata
P(Y=y|X=x). In the case of squeezing, we can model Y as a Bernoulli
random variable (with values of 1 for occurrence of squeezing and 0 for
no squeezing), with probability distribution given by (note that, for
simplicity, we shorten the notation):

p y jxð Þ = μ xð Þy 1−μ xð Þð Þ1−y
; ð1Þ

where μ(x)=p(Y=1|x)=E(y|x) is the parameter of the distribution.
Note, however, that such parameter μ is itself a function of x, and we

therefore need to compute it based on the values of the observed
variables. To that end, we assume that μ depends on x via the linear
transformation ν(x)=θTx (θ is a parameter vector); and also that ν is
transformed into a probability scale by means of the logistic function
(see Figure 1.) That is, we have:

μ xð Þ = 1
1 + exp −ν xð Þð Þ: ð2Þ

The parameter vector θ needs to be “learned” before we can use
the classifier to predict the expected outcome (squeezing or not
squeezing) of a specific case. To that end, we can use training datasets
(as we do by means of the dataset of case histories presented in
Appendix A) to compute maximum likelihood estimates of the
parameter vector θ. (Maximum likelihood estimation is a common
tool for calibration of models in statistics; its goal is to provide a set
of parameters that maximizes the likelihood – in other words, the
probability – that the model generates the observations that we
actually have.)

Given a training dataset of observations of input parameters and
outcomes, D=(xn,yn) ;n=1,…,N, the likelihood of such N observa-
tions can be computed as:

p y1;…; yN jx1;…; xN ; θð Þ = ∏
n
μyn
n 1−μnð Þ1−yn ; ð3Þ

and, taking logarithms for mathematical convenience,

l θ jDð Þ = log p y1;…; yN jx1;…; xN ; θð Þð Þ = ∑
n

yn logμn + 1−ynð Þ log 1−μnð Þf g:

ð4Þ

The log-likelihood in Eq. (4) can be maximized using a Newton–
Raphson-type algorithm such as the Iteratively Re-weighted Least
Squares Algorithm (IRLS) (Wasserman, 2004). Newton–Raphson
algorithms are iterative algorithms in which the i+1-th estimation
of parameters is based on the previous one, and also on the
information about the first and second derivatives with respect to
the (unknown) parameters. The general expression is given by:

θ i + 1ð Þ = θ ið Þ−H−1∇θl; ð5Þ

where l is the log-likelihood function to be optimized (see Eq. (4)),∇ θ

is the gradient vector with respect to the parameters, and H is the
Hessian matrix.

The gradient vector can be computed taking derivatives of Eq. (4)

∇θl = ∑
n

yn−μnð Þxn = XT y−μð Þ; ð6Þ

and, taking second derivatives, we get the Hessian matrix as,

H = −∑
n
μn 1−μnð ÞxnxTn = −XTWX; ð7Þ

where W is a diagonal matrix with weights that are a function of θ
(therefore, they change from iteration to iteration—hence the name of
iterative reweighted) and that are given by,

W = diag μ1 1−μ1ð Þ;…; μN 1−μNð Þf g: ð8Þ

Going back to Eq. (5), and substituting the expressions for the
gradient and Hessian given by Eqs. (6) and (7), we get:

θ i + 1ð Þ = θ ið Þ + XTW ið ÞX
� �−1

XT y−μ ið Þ� �
: ð9Þ

That is, from Eq. (9) we see that we can iteratively compute
estimates of the parameters based on a set of observations. The
Newton–Raphson is a second order algorithm that usually converges

Table 1
Iterative parameter estimates for the linear classifier model.

Iteration θ1 θ2 θ3

(a) logQ vs H model
0 0 0 0
1 −2.452302453 −1.241844276 0.005546925
2 −4.170797469 −1.985885961 0.009685494
3 −5.23285435 −2.42153310 0.01227157
4 −5.52133196 −2.53690498 0.01296426
5 −5.53763677 −2.54334136 0.01300292
6 −5.53768493 −2.54336022 0.01300303

(b) logQ vs logH model
0 0 0 0
1 −7.461548 −1.163881 2.773747
2 −15.290369 −1.964125 5.801055
3 −20.183303 −2.485557 7.679302
4 −21.759721 −2.653168 8.280635
5 −21.892405 −2.667128 8.331105
6 −21.893265 −2.667218 8.331431
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Table 2
Database of case histories employed in this work.

No. Tunnel Location Rock type Span Depth Deformation Geomechanical charact Squeezing Refs

[m] [m] [%] Q SRF N RMR

1 Khara hydro project India Clay conglomerate 6.0 150 0.42 0.400 5000 2000 35 0 Goel et al. (1995b) and
Singh et al. (2007)

2 Khara hydro project India Clay conglomerate 6.0 200 0.75 0.400 5000 2000 30 0 Goel et al. (1995b) and
Singh et al. (2007)

3 Lakhwar India – 6.0 250 8500 2500 21,250 61 0 Goel et al. (1995b)
4 Lakhwar India – 14.0 250 8500 2500 21,250 61 0 Goel et al. (1995b)
5 Maneri stage I India – 58 225 3600 2500 9000 51 0 Goel et al. (1995b)
6 Maneri stage I India – 5.8 550 4500 2667 12,000 55 0 Goel et al. (1995b)
7 Maneri stage I India – 5.8 550 3600 2500 9000 51 0 Goel et al. (1995b)
8 Maneri stage I India – 5.8 300 0.400 5000 2000 35 0 Goel et al. (1995b)
9 Maneri stage II India – 7.0 200 0.570 4386 2500 38 0 Goel et al. (1995b)
10 Maneri stage II India – 7.0 175 0.840 5000 4200 40 0 Goel et al. (1995b)
11 Maneri stage II India – 7.0 250 2710 2583 7000 50 0 Goel et al. (1995b)
12 Maneri–Bhali hydro

project
India Fractured quartzite 4.8 225 0.06 3600 2500 9000 51 0 Goel et al. (1995a) and

Singh et al. (2007)
13 Maneri–Uttarkashi

power
India Sheared Metabasics 4.8 340 0.40 1800 0 Goel et al. (1995a)

14 Maneri–Uttarkashi
power

India Foliated Metabasics 4.8 550 5100 0 Goel et al. (1995a)

15 Salal India – 12.0 150 1.100 2727 3000 41 0 Goel et al. (1995b)
16 Tehri Dam project India Argilaceous phyllite 12.0 220 0.38 0.800 4375 3500 42 0 Goel et al. (1995b) and

Singh et al. (2007)
17 Theri India – 12.0 300 6000 2500 15,000 59 0 Goel et al. (1995b)
18 Upper Krishna project India – 13.0 34 15,000 5000 75,000 68 0 Goel et al. (1995b)
19 Upper Krishna project India Banded schists 13.0 52 0.18 15,000 2500 37,500 65 0 Goel et al. (1995b) and

Singh et al. (2007)
20 Chibro–Khodri India Schists 3.0 280 2.80 0.050 7500 0.375 14 1 Goel et al.( 1995b) and

Hoek (2001)
21 Chibro–Khodri India – 3.0 280 4.50 0.220 0.500 0.110 13 1 Goel et al. (1995b)
22 Chibro–Khodri India – 9.0 680 6.00 0.050 10,000 0.500 14 1 Goel et al. (1995b)
23 Chibro–Khodri India – 9.0 280 2.00 0.022 5000 0.110 13 1 Goel et al. (1995b)
24 Giri–Bata India – 4.6 240 5.50 0.120 5000 0.600 20 1 Goel et al. (1995b)
25 Giri–Bata India Slate 4.2 380 7.60 0.510 5000 2550 35 1 Goel et al. (1995b) and

Hoek (2001)
26 Khimti 1 hydroproject

A1 ch515
Nepal Sheared schists 4.2 100 5.24 0.005 10,000 0.045 7 1 Shrestha (2005)

27 Khimti 1 hydroproject
A4 ch1013

Nepal Sericite schists 4.0 112 2.39 0.006 10,000 0.060 18 1 Shrestha (2005)

28 Khimti 1 hydroproject
A1 ch580

Nepal Sheared schists 4.3 111 1.50 0.008 10,000 0.080 7 1 Shrestha (2005)

29 Khimti 1 hydroproject
A4 ch974

Nepal Gneiss 4.0 112 0.40 0.008 10,000 0.080 23 0 Shrestha (2005)

30 Khimti 1 hydroproject
A4 ch1045

Nepal Clay–filled sheared
gneiss

4.0 112 0.20 0.008 10,000 0.080 19 0 Shrestha (2005)

31 Khimti 1 hydroproject
A3 ch220

Nepal Schists 4.0 140 1.60 0.009 10,000 0.090 8 1 Shrestha (2005)

32 Khimti 1 hydroproject
A1 ch500

Nepal Sheared schists 4.2 100 7.63 0.010 10,000 0.100 17 1 Shrestha (2005)

33 Khimti 1 hydroproject
A2 ch601

Nepal Sericite schists 4.0 138 0.38 0.013 10,000 0.130 18 0 Shrestha (2005)

34 Khimti 1 hydroproject
A2 ch1283

Nepal Gneiss and sericite
schists

4.4 212 0.05 0.040 2500 0.100 17 0 Shrestha (2005)

35 Khimti 1 hydroproject
A3 ch345

Nepal Gneiss and sericite
schists

5.0 300 0.36 0.050 5000 0.250 20 1 Shrestha (2005)

36 Khimti 1 hydroproject
A1 ch665

Nepal Gneiss and schists 4.0 112 0.59 0.060 5000 0.300 20 0 Shrestha (2005)

37 Khimti 1 hydroproject
A2 ch1730

Nepal Gneiss 4.0 95 0.58 0.065 5000 0.325 20 0 Shrestha (2005)

38 Khimti 1 hydroproject
A4 ch550

Nepal Chlorite sericite gneiss 4.0 218 0.28 0.070 10000 0.700 27 0 Shrestha (2005)

39 Khimti 1 hydroproject
A1 ch475

Nepal Gneiss and sericite
schists

4.0 98 1.55 0.080 3800 0.304 15 1 Shrestha (2005)

40 Khimti 1 hydroproject
A3 ch235

Nepal Gneiss 5.0 284 2.48 0.090 5000 0.450 19 1 Shrestha (2005)

41 Khimti 1 hydroproject
A3 ch340

Nepal Gneiss and sericite
schists

5.0 300 0.56 0.090 2500 0.225 25 1 Shrestha (2005)

42 Khimti 1 hydroproject
A2 ch1357

Nepal Banded gneiss and
chlorite schists

4.0 261 0.31 0.095 5000 0.475 21 0 Shrestha (2005)

43 Khimti 1 hydroproject
A2 ch895

Nepal Gneiss and chlorite
schists

4.0 198 0.58 0.140 7500 1050 21 0 Shrestha (2005)

44 Khimti 1 hydroproject
A4 ch503

Nepal Gneiss and sericite
schists

4.0 225 0.49 0.140 5000 0.700 28 0 Shrestha (2005)

45 Khimti 1 hydroproject
A3 ch15

Nepal Gneiss and schists 5.0 130 0.68 0.200 5000 1000 25 1 Shrestha (2005)
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rapidly, so that a small number of iterations is usually enough to
converge to a (the) solution of the parameter vector.

4. Results and discussion

We have implemented the algorithm described in Section 3 using
the software for statistical analysis R (R Development Core Team,
2004). Following the work of previous authors (Singh et al., 1992;
Hoek and Marinos, 2000; Hoek, 2001), we employ an input obser-
vations vector composed of two parameters related to “capacity” and
“demand”.

Capacity parameters could be related to rock mass strength as
indicated by σcm (see e.g. Hoek, 2001) or by the Geological Strength
index (Hoek and Brown, 1997); to rock mass characterizations
given, for instance, by the RMR, Q, or RMi systems (for a review see
Palmstrom and Stille, 2007); or even to some indicator of strain
such as the elastic strain employed by Aydan et al. (1993) to define
squeezing levels, or the critical strain employed by Singh et al. (2007)
to define squeezing potential.

In this paper, we employ the rock quality index Q as an indicator
of capacity. The reason is that, despite the shortcomings indicated
below, the Q system has been routinely employed during construc-
tion of Himalayan tunnels, therefore making it possible to compile an
extensive database of case histories (see references in Appendix A). It
also avoids the necessity to conduct laboratory tests (e.g., to estimate
the values of mi and σci that are needed to compute σcm, or to esti-
mate elastic or critical strains of the rock mass), therefore making it a
convenient method for its application in real projects. (Laboratory
tests are difficult to conduct in broken rocks prone to squeezing, and
large-scale in situ tests are uncommon.) Similarly, it also avoids the
need for advanced numerical models that may not be feasible at an
early stage of a project. Furthermore, the use of Qwill allow us to build
on the work of Singh et al. (1992), and to compare our results with
their widely employed Q-based squeezing criterion.

It has to be noted, however, that rock mass classifications could be
unreliable in some cases when employed for squeezing prediction
(Palmstrom and Stille, 2007), since rock squeezing is a complex
phenomenon and they are only a limited approximation to the real
ground behavior. (Other “behavioristic” methods, such as NATM, are
based on monitoring the actual behavior of the ground in the tunnel
and, therefore, they can only be employed after construction has
started.) In that sense, for instance, the Q is expected to work better in
fractured and “blocky” rock masses (Palmstrom and Stille, 2007) and,
for squeezing prediction, could present difficulties associated to the

Table 2 (continued)

No. Tunnel Location Rock type Span Depth Deformation Geomechanical charact Squeezing Refs

[m] [m] [%] Q SRF N RMR

46 Khimti 1 hydroproject
A3 ch59

Nepal Gneiss and schists 4.1 158 0.64 0.230 2500 0.575 30 0 Shrestha (2005)

47 Khimti 1 hydroproject
A3 ch200

Nepal Gneiss and shists 5.0 276 1.55 0.250 5000 1250 37 1 Shrestha (2005)

48 Khimti 1 hydroproject
A3 ch210

Nepal Gneiss and shists 5.0 276 1.13 0.280 5000 1400 25 1 Shrestha (2005)

49 Khimti 1 hydroproject
A2 ch441

Nepal Gneiss 4.0 126 0.07 0.300 2500 0.750 38 0 Shrestha (2005)

50 Khimti 1 hydroproject
A4 ch852

Nepal Banded gneiss 4.0 114 0.05 0.470 3800 1786 35 0 Shrestha (2005)

51 Khimti 1 hydroproject
A4 ch876

Nepal Banded gneiss 4.0 114 0.49 0.600 2500 1500 41 0 Shrestha (2005)

52 Loktak hydro India Schists 4.6 300 7.00 0.020 1 Hoek (2001) and
Singh et al. (2007)

53 Loktak hydro India – 4.6 300 7.00 0.023 7500 0.173 15 1 Goel et al. (1995b)
54 Maneri Bhali stage I India Fractured quartzite 4.8 350 7.90 0.500 1 Goel et al. (1995a) and

Hoek (2001)
55 Maneri Bhali stage II India Metabasite 2.5 480 2.50 0.800 5000 4000 35 1 Goel et al. (1995b) and

Hoek (2001)
56 Maneri Bhali stage II India Metabasite 7.0 410 3.00 0.180 5000 0.900 24 1 Goel et al. (1995b) and

Hoek (2001)
57 Maneri stage I India – 5.4 350 0.500 7500 3750 40 1 Goel et al. (1995b)
58 Maneri–Uttarkashi

power
India Laminated Metabasics 4.8 800 8.90 2500 1 Goel et al. (1995a) and

Hoek (2001)
59 Nathpa Jhakri

hydroproject
India Schists 20.0 250 0.25 2700 5000 13,500 0 Bhasin et al. (1995) and

Bhasin et al. (1996)
60 Uri project (tailrace)

0/300
India Graphitic schists 90.4 500 0.030 12 1 Brantmark (1998)

61 Uri project (tailrace)
1/075

India Metavolcanics 90.4 300 1900 50 0 Brantmark (1998)

62 Uri project (tailrace)
1/340

India Graphitic schists 90.4 400 0.030 12 1 Brantmark (1998)
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Fig. 1. The logistic function.
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assessment of the SRF, and to the lack of consideration of the com-
pressive strength of the rock mass.

The difficulty with the SRF is that (as originally defined) SRF is itself
a function of the degree of squeezing occurrence (Palmstrom and
Broch, 2006). This shortcoming lead to the definition of the RockMass
Number by Goel et al. (1995b); similarly, in more recent Himalayan
projects (see e.g., Shrestha, 2005), the trend has been to define SRF
based on the presence of weakness zones instead of on squeezing
occurrence. Similarly, the Q system does not consider the compressive
strength of the rockmass, although it could have an influence on stress-
induced problems such as squeezing. (The expression σcm≈5γrockQc

1/3,
withQc=Qσc/100, has been proposed by Barton (2000) to estimate the
compressive strength of rock masses.)

Themost common demand parameter is the stress level of the rock
mass surrounding the tunnel, which depends on several factors such
as tunnel depth, overall tectonic stress, and tunnel orientation with
respect to the in-situ stress orientation. In this case, we use the depth
of the tunnel H (in meters) as an indicator of demand; the reason is
that depth can be employed (in a first approximation, and for rocks of
similar density) to estimate the stress level in a tunnel constructed in
a given tectonic region. (Note that, for instance, Hoek (2001) com-
putes demand as σ0=γrockH, which mainly depends on H for rocks of
similar density.) In addition, and although recent research (Heidbach
et al., 2010) has shown that local stress sources (such as active faults
systems) could control the short wave length (b200 km) of the stress
pattern, it is expected that stresses will be heavily influenced by
tectonic forces, so that they will be “similar” for tunnels with similar
depth in the same tectonic region. (Figure 2 illustrates this point, and

it shows that stress orientations are similar within the tectonic
domain of the Himalayas and Himalayan foothills.)

Based on the above, we develop a linear classifier model that is
given by the following the input observations matrix (note that Q
has a logarithmic scale, and it is therefore convenient to perform the
analysis working with log Q):

X = 1;X1; X2½ � = 1; logQ ;H½ �; ð10Þ

where X is a N×3-dimensional matrix and 1 is a vector of ones that is
used toprovide an independent term in the regression. (Remember that
N is the number of observations in the database of case histories
employed.)Wealso construct aN×1-dimensional vector Y of squeezing
observations, where we use the convention that y=1 if the case cor-
responds to occurrence of squeezing and y=0 otherwise.

Similarly, following the work of Singh et al. (1992), we can also
develop amodel in which the influence ofH enters using a logarithmic
scale; that is, we would have the following observations matrix:

X = 1; X1;X2½ � = 1; logQ ; logH½ �; ð11Þ

with its corresponding N×1-dimensional vector Y of squeezing
observations.

The fast convergence of the IRLS algorithm to “learn” the vector of
parameters, θ, (both in log Q vs H model and also in the log Q vs log H
model) is illustrated by the different iterative estimates presented in
Table 1. (A stopping criterionwith tolerance of 1E-12 in log-likelihood
values was employed.)
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Fig. 2. Orientation of in-situ stresses in the Himalayan region (from World Stress Map project; Heidbach et al., 2008).
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Once that the classifier has been “learned”, we can go back to the
definition of ν=θTx and to the probability transformation given by the
logistic function in Eq. (2) to compute lines with equal squeezing-
probability for any probability values. For the log Q vs H classifier, we
have:

θTx = ln
μ xð Þ

1−μ xð Þ
� �

; ð12Þ

θ1⋅1 + θ2 logQ + θ3H = ln
μ xð Þ

1−μ xð Þ
� �

; ð13Þ

where θi values are given by the converged solutions presented in
Table 1(a).

In addition, from Eq. (12) we can obtain lines in log Q−H space
with constant squeezing probability (for any value of probability
given by μ). For instance, if we consider a line with 50% of squeezing
probability, we obtain (working in Eq. (12) with μ=0.5):

H m½ � = 425:97 + 195:64logQ : ð14Þ

A similar discussion can be presented for the log Q− log H classifier
model; the original equation of the classifier is:

θ1⋅1 + θ2 logQ + θ3 logH = ln
μ xð Þ

1−μ xð Þ
� �

; ð15Þ

from where we can obtain the following class-separation line with a
50% of squeezing probability:

logH m½ � = 2:6278 + 0:3201logQ : ð16Þ

The boundary line with 50% of squeezing probability can be, of
course, plotted in a graph with the case histories employed, and it can
also be used as a boundary line (50% decision line) to separate
between squeezing and no-squeezing conditions. Such plot has been
presented (both for the log Q vs H and for the log Q vs log H classifiers)
in Fig. 3, where additional lines with other different squeezing
probabilities (i.e., for μ={0.01,0.10,0.25,0.50,0.75,0.90,0.99}) have
been presented as well. Similarly, and for comparison, Fig. 3 also
presents the squeezing discrimination criterion proposed by Singh
et al. (1992) based on their research on squeezing in tunnels in the
Himalayas.

Based on the results presented in Fig. 3, we observe that, as
expected, the newly proposed squeezing classifier shows an increase
of squeezing probability as the depth of the tunnel increases and as
the quality of the rock mass decreases. In particular, results indicate
that tunnel depth can have a very important influence on the pre-
dicted values of squeezing probability, so that they could change from
≈10% for “shallow” tunnels in “bad” rock (i.e., Q≈1) to more than
90% for “deep” tunnels (HN600 m) in the same rock mass. They also
indicate that rock mass quality can have a very strong influence on
squeezing probability, with probabilities of squeezing changing by a
relatively large amount given a single-step classification change
within the Q system. As an illustration, results in Fig. 3 indicate that
the difference between having a rock mass at the boundary between
a “extremely poor” and “very poor” classification (i.e., Q≈0.1), and at
the boundary between “very poor” and “poor” classification (Q≈1)
can be significant, with a change in squeezing probability of more
than 50% in some cases.

In addition, we can use the observations within the dataset to assess
the validity of the predictions. For instance, we observe (Figure 3(a))
that the 50% squeezing probability line (that, as mentioned, could be
used as a hard-boundary for separation between squeezing and no-
squeezing) presents a total of 13 (7-6) cases of miss-classification of
observations in logQ vsH space, as sevenobservations are assigned ano-
squeezing label when they actually presented squeezing, whereas six

observations are assigned a squeezing label even though they did not
present squeezing in reality; similarly (Figure 3(b)), it presents a total of
eight (5-3) miss-classifications in log Q vs log H space. We also observe
that, in both cases, suchmiss-classifications are (almost) balanced with
respect to the 50% probability line; in other words, the linear classifier
provides unbiased predictions of squeezing occurrence. Results also
show that lines for other squeezing probability values provide rea-
sonable results based on the evidence available and, for instance, cases
of miss-classification tend to occur for cases in which the assignment
is less certain (i.e., for assignment probabilities within the range of
10–75%).

By comparison, the squeezing criteria by Singh et al. (1992) (see
Figure 3) present a total of 11 (2-9) miss-classifications with this
database; note, however, that Singh's criteria seem to be (conserva-
tively) “biased” toward assigning squeezing labels to cases in which
no-squeezing occurred, as two observations are assigned a no-
squeezing label when they actually presented squeezing, and nine
observations are assigned a squeezing label but they did not present
squeezing in reality. Similarly, it is observed that the newly developed
model in log Q vs log H space provides a class-separation line that is
almost parallel to the squeezing criterion proposed by Singh et al.
(1992); in other words, the sensitivity of results to changes in rock
quality and in tunnel depth is almost the same. In that sense, the
reader should note that from Eq. (16) we obtain a class-separation
line given by:

H m½ � = 424:4Q0:32
; ð17Þ

which is very similar (but slightly less conservative) to the
H=350Q1/3 proposed by Singh et al. (1992).

Finally, it is important to mention that the computed parameters
cannot be considered as a “final solution” to the squeezing problem,
and that they could (and should) be updated as more case histories of
squeezing (or non-squeezing) tunnel performance become available.
(Note that this is probably the reason why the squeezing criterion by
Singh et al. (1992) seem to perform relatively worse in this case, as we
have extended the original database that they employed in their
work.) In addition, the reader should note that the newly proposed
criteria for estimation of (probabilities of) squeezing occurrence is
an empirical method and, therefore, it is only valid within the range
of the variables for which there is data available. That means that,
at least until more case histories can be included in the database,
our empirical squeezing criterion should not be employed for tun-
nels deeper than, say, approximately 600–800 m, since that is the
maximum depth range of reliable observations available within the
database.

5. Conclusions

Rock squeezing is a time dependant process that typically occurs in
weak over-stressed rock masses and that could have a significant and
negative influence on the budget and time needed for successful
completion of a tunneling project. In this paper we present a novel
method for probabilistic empirical prediction of squeezing conditions in
rock tunnels, so that squeezing occurrences predicted by our method
would be expected to correspond to cases in which relatively large
deformations (more than 1% for an unlined tunnel) could occur,
therefore producing problems during or after construction unless
special construction methods are employed. To that end, we employ an
extensive database of well-documented case histories of tunnels from
theHimalayas and Himalayan foothills that has been compiled from the
literature, and we apply the statistical theory of linear classification to
develop a predictor of squeezing occurrence and to compute
probabilities of squeezing that can be useful for risk analyses. No
intention is made to model the time-dependant aspect of the problem
or, in other words, to compute the evolution of convergenceswith time,
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although such analysis should probably be performed (using adequate
methods, and after an adequate characterization of the rock mass)
when squeezing occurrence is predicted with our model.

Our results show that, as expected, the newly proposed squeezing
classifier shows a significant increase of squeezing probability as the
depth of the tunnel increases, with probabilities of squeezing of
“shallow” tunnels being significantly lower than for “deep” tunnels in
a given rock mass. Similarly, it is also shown that the squeezing
probability increases as the quality of the rock mass decreases; they
also indicate that rock mass quality can have a very strong influence
on squeezing probability, with probabilities of squeezing changing by
a relatively large amount given a single-step classification change
within the Q system.

Two linear classifiermodels (logQ vsH and logQ vs logH) have been
proposed. Results show that the computed classifiers provide

unbiased results in both cases (with approximately the same number
of false positives and false negatives), and they also suggest that
the logQ vs logH model has (slightly) better predictive capabilities.
(This would suggest that the influence of tunnel depth on squeezing
occurrence is a non-linear function.) In that sense, our newly pres-
ented model in logQ vs logH space for class-separation between
squeezing and no-squeezing conditions suggests a similar sensitivity
to depth and rock quality than the model by Singh et al. (1992) (both
lines are parallel). However, it presents some improvements with
respect to previously available criteria, as it presents fewer cases of
miss-classification (hence improving the predictive capabilities of
the approach) and also as it allows the estimation of probabilities
that may be useful for decision-making under uncertainty.

Finally, it is important to emphasize that the presented solution
could be further improved as more case histories of squeezing (or
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Fig. 3. Equi-probability lines for prediction of squeezing behavior.
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non-squeezing) tunnel performance are included in the training
database. In addition, the reader should note that the newly proposed
criterion for estimation of (probabilities of) squeezing occurrence is
an empirical method and, therefore, it is only valid within the range of
the variables for which there is data available. Thatmeans that, at least
until more case histories can be included in the database, our em-
pirical squeezing criterion should not be employed for tunnels deeper
than, say, approximately 600–800 m, since that is the maximum
depth range of observations available within the database.
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