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Abstract We present a novel approach for calibration of

stochastic discontinuity network parameters based on

genetic algorithms (GAs). To validate the approach,

examples of application of the method to cases with known

parameters of the original Poisson discontinuity network

are presented. Parameters of the model are encoded as

chromosomes using a binary representation, and such

chromosomes evolve as successive generations of a

randomly generated initial population, subjected to GA

operations of selection, crossover and mutation. Such back-

calculated parameters are employed to make assessments

about the inference capabilities of the model using different

objective functions with different probabilities of crossover

and mutation. Results show that the predictive capabilities

of GAs significantly depend on the type of objective

function considered; and they also show that the calibration

capabilities of the genetic algorithm can be acceptable for

practical engineering applications, since in most cases they

can be expected to provide parameter estimates with rela-

tively small errors for those parameters of the network

(such as intensity and mean size of discontinuities)

that have the strongest influence on many engineering

applications.

Keywords Fracture network � Discontinuity size �
Discontinuity intensity � Poisson disk model

1 Introduction

It is well known that discontinuities are the single indi-

vidual factor with the strongest influence on the deforma-

bility, strength and permeability of rock masses (Hudson

and Harrison 1997; Goodman 1976). However, despite

recent contributions for three-dimensional characterization

of fracture networks at block scale (see e.g. Dowd et al.

2009), deterministic characterization of individual discon-

tinuities in a rock mass at engineering scale is usually

unachievable in real applications.

Such difficulties to characterize individual discontinu-

ities deterministically led to the development of stochastic

discontinuity networks. Within this framework, the sto-

chastic nature of discontinuities in a rock mass is consid-

ered in a statistical sense, that is, by means of statistical

distributions (often constrained by a suitable geological

model) that characterize their properties such as, for

instance, location, size and termination mode (see e.g.

Meyer and Einstein 2002; Lee et al. 1990; Dershowitz and

Einstein 1988; Cravero et al. 2006).

To be able to use stochastic discontinuity networks in

real applications, however, it is necessary to calibrate the

parameters of the stochastic discontinuity network. In this

regard, significant efforts have been made to characterize

several aspects of discontinuities or discontinuity sets in

the network, such as their intensity (Dershowitz and Herda

1992; Zhang and Einstein 2000), the distribution of their

sizes (see e.g. Priest 2004; Lyman 2003b; Zhang et al.

2002; Villaescusa and Brown 1992; Kulatilake and Wu

1986; Tonon and Chen 2007; Jimenez-Rodriguez and Sitar

2006a) or their orientation (see e.g. Jimenez-Rodriguez

and Sitar 2006b; Jimenez 2008; Tokhmechi et al. 2011).

In addition, calibrated networks have been employed

to characterize rock masses for different engineering
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applications, such as the design of underground nuclear

repositories (Munier 2004; Kulatilake et al. 1993, 2003),

analyses of groundwater flow (Meyer and Einstein 2002)

and analysis of the formation of removable and unstable

blocks in underground excavations (Kuszmaul 1999;

Dershowitz and Carvalho 1996; Song et al. 2001; Starzec

and Andersson 2002) and in slopes (Jimenez-Rodriguez

and Sitar 2008; Park et al. 2005; Park and West 2001).

La Pointe et al. (1993) proposed a methodology based

on forward modelling and simulated sampling to estimate

the size of fractures in discontinuity networks. To that end,

they simulate realizations of the stochastic network using

different sets of parameters, and they compare statistics of

the simulated trace maps with statistics of the original trace

map. To perform such comparison, they build on the key

idea that the ratio between the number of fractures partially

intersecting one sampling surface to all fractures inter-

secting such surface is controlled by the size distribution of

the discontinuity sets only. This assumption allows them to

assess the ‘quality’ of a specific set of parameter values by

comparing their (simulated) intersection ratios with the

(observed) ratios of the original trace map. Similar ideas

based on counting the number of traces within a sampling

domain have also been employed to estimate the distribu-

tion of trace lengths in rock outcrops (see e.g. Pahl 1981;

Mauldon 1998; Zhang and Einstein 1998; Lyman 2003a).

Genetic algorithms (GAs) are a special type of algorithm

based on the ideas of evolutionary biology and natural

selection (Mitchell 1996; Goldberg 1989). To solve a

specific optimization problem, GAs consider an initial

population of individuals as possible solutions, in which

the parameters of each possible solution are suitably

encoded by means of ‘chromosomes’. [Note that we limit

our discussion of GAs to optimization problems, although

they have also been employed to solve other types of ‘non-

optimization’ problems; see Mitchell (1996) for additional

examples.] The set of chromosomes that form each possi-

ble solution is the ‘genotype’ of such solution; accordingly,

once decoded, the genotype of each individual represents

one possible solution to the optimization problem. (Once

decoded, the parameters that form such solution are called

the ‘phenotype’.)

One reason for the success of GAs is that the genotype

of each individual is transmitted to future generations

through a process of selection, crossover and mutation in

such a way that ‘fittest’ individuals (hence the best avail-

able solutions to the problem up to that moment) have more

probability of transmitting their genotype (in a probably

slightly modified form) to future generations. As a conse-

quence, each generation is expected to improve (in an

average sense) its quality as a solution, hence increasing

the probability of converging to an acceptable solution of

the optimization problem. Note, however, that GAs are not

guaranteed to provide a global optimum solution because

of their inherent heuristic character, even though they have

been shown to be excellent tools to solve complex opti-

mization problems (Levasseur et al. 2008).

In the context of geotechnics, GAs have been employed

(among others) to solve such different problems as param-

eter identification of soil and rock models (see e.g. Guan

et al. 2009; Levasseur et al. 2008, 2010), identification of

critical slip surfaces in slope stability (see e.g. Zolfaghari

et al. 2005; Xue and Gavin 2007; Fahd and Jimenez 2008)

and the reliability of finite elements (FE) designs (Cui and

Sheng 2005). Similarly, in rock mechanics, GAs have been

employed to identify the discontinuity frequency in frac-

tured rock masses (Simpson and Priest 1993), for discon-

tinuity clustering and estimation of discontinuity orientation

(Kemeny and Post 2003; Cai et al. 2005) and to estimate the

size and shape of rectangular fractures with constant size

and aspect ratio (Decker and Mauldon 2006).

In this paper, we present an extension to the work of La

Pointe et al. (1993) for calibration of rock discontinuity

networks, and we propose a novel approach for inference

of the network parameters based on the use of genetic

algorithms. Similarly, and as a proof of concept, we vali-

date the approach using discontinuity networks generated

with the Poisson disk model and a simple genetic algorithm

in which only reduced efforts for optimization have been

employed. Our results show that GAs are able to success-

fully back-calculate the original parameters of the Poisson

model used for generation of the reference stochastic dis-

continuity network, and that such estimation can be con-

ducted with a degree of accuracy that is acceptable for

many engineering applications.

2 Generation of Discontinuity Traces

We employ the Poisson disk model to generate disconti-

nuities in a three-dimensional (3D) space. The Poisson disk

model is a simple model commonly used to generate dis-

continuity networks in rock mechanics (see e.g. Baecher

et al. 1977; Dershowitz and Einstein 1988); it has been

found to generate discontinuities that are often similar to

discontinuity patterns in nature, and it has been recognized

that, in many cases, discontinuity networks are best char-

acterized by Poisson models (La Pointe 1993; Bonnet et al.

2001).

Discontinuity centres generated with the Poisson disk

model are assumed to be uniformly located within a

‘generation domain’ employed for discontinuity generation

in 3D, and discontinuity traces are obtained as the inter-

section of such discontinuities with a ‘reference outcrop’.

(Note that, therefore, the distribution of discontinuity trace

lengths is not an input of the analysis, as it depends on the
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shape and size distribution of the 3D discontinuities

considered.)

Figure 1 shows an example of (two-dimensional, 2D)

discontinuity traces formed by the intersection of (3D)

simulated discontinuities with a (rectangular) reference

outcrop. Discontinuities are further assumed to be circular,

with their radii following a lognormal distribution with

mean lR and standard deviation rR. The amount of dis-

continuities is controlled by the volumetric intensity P32

[m2/m3] of generated discontinuities [defined as the ratio

between area of discontinuities and rock volume; see

Dershowitz and Herda (1992)], with discontinuities being

generated until a threshold value of P32 is achieved.

To calibrate the Poisson disk model described above, we

need information about the orientation, the intensity and

the size of discontinuities. The orientation of discontinu-

ities, however, can be characterized without the need for a

GA using well-established methods for identification of

discontinuity sets and for characterization of their orien-

tation (see e.g. Jimenez-Rodriguez and Sitar 2006b; Jime-

nez 2008, and references therein); for this reason, in our

analyses below, discontinuities will be assumed to have a

known (and constant) orientation. (For simplicity, discon-

tinuities are further assumed to be perpendicular to the

reference outcrop and parallel to one of the sides of the

reference outcrop; for this reason, they are represented as

circles in the projection shown in Fig. 1.)

Depending on whether the discontinuity intersects the

reference outcrop, and (if it does) on the censoring con-

ditions of the resulting discontinuity traces in relation to the

reference outcrop, we can identify four types of disconti-

nuities: (i) discontinuities that do not intersect the reference

outcrop (‘no intersection’ or C = -1 conditions), (ii) dis-

continuities that intersect the outcrop producing traces with

both ends observed (‘no censoring’, or C = 0 conditions),

(iii) discontinuities that intersect the outcrop producing

traces with one end observed and one end censored

(‘censoring on one side’, or C = 1 conditions), and (iv)

discontinuities that intersect the outcrop producing traces

with both ends censored (‘censoring on both sides’, or

C = 2 conditions). Figure 2 shows an example of such

censoring conditions for our simplified case with vertical

discontinuity traces on a rectangular outcrop.

3 Description of the Genetic Algorithm

Genetic algorithms are evolutionary algorithms in which

individuals of a population represent (using an adequate

encoding by means of chromosomes) possible solutions to

a particular problem. The genotypes of individuals are then

modified using operations that mimic natural selection; the

objective is to increase the ‘fitness’ of individuals in

the population as solutions to a particular problem as the

number of generations increases, thereby obtaining an

acceptable (although probably not ‘the best’) solution to

the problem.

Fig. 1 Example of traces

formed by the intersection of

simulated 3D discontinuities

with the ‘reference outcrop’.

The disk on the left represents a

discontinuity that does not

intersect the excavated slope.

The disks on the right represent

discontinuities that intersect the

reference outcrop producing

discontinuity traces with

different censoring conditions

Fig. 2 Illustration of several censoring conditions for a simplified

case
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Next, we present a description of the simple genetic

algorithm employed in this work, which is heavily based on

the work of Goldberg (1989). It has to be noted that we do

not aim to optimize the different operations described, as

the main aim of this paper is to present, as a proof of

concept, that GAs are a viable tool for calibration of sto-

chastic discontinuity networks. However, as we will show,

acceptable results (from an engineering viewpoint) are

obtained even with this relatively simple GA.

3.1 Codification of Solutions

The selection of an adequate encoding system is a crucial

step for successful application of genetic algorithms in real

applications (Mitchell 1996; Goldberg 1989). Based on the

above, and as shown in Fig. 3a, our genetic algorithm will

only need to consider individuals with a genotype that

includes chromosomes to represent the intensity of dis-

continuities (as measured by P32) and the parameters of the

distribution employed to characterize discontinuity sizes

(such as, for instance, its mean lR and standard deviation

rR). Such parameters are real numbers, which indicates

that we need to encode real numbers in our genetic algo-

rithm. Goldberg (1989) discusses encoding alternatives for

GAs, concluding that use of binary encoding is a practical

solution in many cases. Using binary encoding, a chro-

mosome representing a specific parameter value is encoded

using a string of 0s and 1s; such string can then be easily

decoded to an integer I in the interval [0, 2N - 1], where N

is the length of the binary string representing the chro-

mosome. Then, as shown in Fig. 3b, we can use I to

interpolate within a given interval where the solution for

real parameter x is expected; i.e., x 2 ½xmin; xmax�; where

xmin and xmax are values that represent the user-specified

search range. (The reader will note that we are in fact

discretizing the solution search space; however, note also

that the distance between two consecutive parameter values

that can be obtained with this decoding operation is

(xmax - xmin)/(2N - 1), which is perfectly acceptable in

real applications for large N values, such as the N = 20

employed in this work.)

3.2 Objective Function

The objective function quantifies the ‘quality’ (or fitness)

of individuals as a solution to the optimization problem. To

define such fitness, we need to work with the information

that is available in each particular problem; this means that,

in this case, we need to employ data available from dis-

continuity trace maps observed in rock outcrops. To that

end, and working in a similar problem of estimation of

discontinuity sizes, La Pointe et al. (1993) employed the

ratio of discontinuities partially intersecting the sampling

domain to all discontinuities intersecting such domain to

evaluate the quality of a proposed size distribution as a

solution to the inference problem.

Building on this idea, we choose to evaluate the simi-

larity between trace maps by comparing the total number of

traces between the observed and simulated trace maps, and

also by comparing the number of discontinuity traces with

C = 0 (no censoring) , C = 1 (censoring on one side) and

C = 2 (censoring on both sides).

Furthermore, we allow some flexibility in the fitness

function so that it can incorporate the differences between

the observed and simulated mean length of discontinuity

traces, and also between the observed and simulated stan-

dard deviation of discontinuity trace lengths. In particular,

we define a general fitness function given by

(a) (b)

Fig. 3 Parameters represented

by the chromosomes of

individuals and illustration of

the decoding operation of such

chromosomes into real

parameter values
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f ¼ w0 þ 1:0þ w1dNtotal
þ w2dN0 þ w3dN1ð

þ w4dN2 þ w5dlL
þ w6drL

��1
; ð1Þ

where dN ¼ Nref�NGA

Nref is the relative error between the

observed (reference) number of total or censored discon-

tinuity traces and the number of such traces simulated with

the GA (Ntotal indicates the total number of traces; and

Ni, with i = {0, 1, 2}, indicates the number of traces with

C = i censoring conditions); dlL
¼ lref

L �lGA
L

lref
L

is the relative

error between the observed (reference) and simulated (GA)

mean length of discontinuity traces on the outcrop; drL
¼

rref
L
�rGA

L

rref
L

is the relative error in the standard deviation of

observed and simulated discontinuity trace lengths; and

wi, with i ¼ f0; . . .; 6g, are weighting factors that allow us

to change the relative importance of the different terms

involved in the definition of the fitness function.

Although we will show that some simple fitness func-

tions based on Eq. 1 produce adequate results while

maintaining the simplicity of the algorithm, the reader

should note that we do not postulate that Eq. 1 is the best

possible fitness function and, for instance, we employ a

linear ‘fitness scaling’ to improve convergence (Goldberg

1989). The motivation behind such correction is to avoid

‘very good’ individuals that could happen at initial gener-

ations from being selected too often (hence leading to

premature ‘specialization’) and, at the same time, to pro-

mote the reproduction of the best individuals at later stages,

when the average fitness is similar to the fitness of the best

individuals [even though the ‘diversity’ of the population

may still be significant; see Goldberg (1989)]. The linear

fitness scaling is given by

f 0 ¼ af þ b; ð2Þ

where f is the ‘original’ fitness computed with Eq. 1, and

f0 is the scaled fitness. Coefficients a and b can be selected in

different ways; following Goldberg (1989), we impose two

conditions so that (i) the original and scaled fitness have

identical averages ðfavg ¼ f 0avgÞ, and (ii) that the maximum

scaled fitness is a specified constant times the average

ðf 0max ¼ CmultfavgÞ. Goldberg (1989) indicates that Cmult

values from 1.2 to 2.0 typically work well for ‘small’

populations of around 50–100, and we used Cmult = 1.7 for

our population of 120, except when negative fitness values

would have been produced. [In that case, Cmult is selected so

as to produce a minimum scaled fitness of zero; for addi-

tional discussion and code snippets, see Goldberg (1989).]

3.3 Reproduction, Crossover and Mutation

Reproduction, crossover and mutation are the fundamental

operators that dictate the evolution of genotypes in a

genetic algorithm. In particular, reproduction defines how

‘parent’ individuals are selected so that they can produce a

new generation of ‘descendant’ individuals; crossover

indicates how the genotypes of parent individuals are

combined (or not) to produce the genotypes of descen-

dants; and, finally, mutation produces small random vari-

ations of the genotype of some individuals.

The probability that a given individual is selected for

reproduction increases as its fitness increases (or, in other

words, as its quality as a solution increases). To that end,

following the work of Goldberg (1989), we employ a

roulette-wheel selection scheme (Fig. 4), in which the

probability, pi, of selection for reproduction of individual

i, is given by its (scaled) fitness, f 0i (see Eq. 2), divided by

the sum of the (scaled) fitness of all individuals in that

generation; i.e.,

pi ¼
f 0iPN
j¼1 f 0j

: ð3Þ

To select a specific individual for reproduction, we start by

generating a random number u from a uniform distribution

U[0, 1], and we select for reproduction the individual in

position M, where M is the smallest integer such that the

following equation holds:

XM

i¼1

pi [ u: ð4Þ

Crossover is also implemented following a simple

operation proposed by Goldberg (1989), in which we take

advantage of the encoding system employed (Fig. 5).

Fig. 4 Illustration of the roulette-wheel selection scheme for repro-

duction operation
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Given two parent individuals, we first use a binomial dis-

tribution with parameter Pcrossover to decide whether

crossover occurs. If the output is positive (which will

happen, with probability Pcrossover, when a random value

u generated from a uniform distribution U[0, 1] is such that

u \ Pcrossover), then we combine the chromosomes of both

parents to produce two offsprings with mixed genotypes

(Fig. 5a); otherwise, we just copy the genetic content from

parents to offsprings (Fig. 5b). To combine chromosomes,

we first generate a random integer (which we call M)

uniformly distributed in the interval [1, N - 1]; once

position M has been determined, the crossover operation

combines bit strings as indicated in Fig. 5a; that is, the first

descendant’s chromosome is produced by concatenation of

the initial M bits (zeros or ones) of the first parent’s

chromosome and the last N - M bits of the second parent’s

chromosome; similarly, the second descendant’s chromo-

some is produced by concatenating the initial M bits of the

second parent’s chromosome and the last N - M bits of the

first parent’s chromosome.

(a)

(b)

Fig. 5 Schematic

representation of the crossover

operation (based on Goldberg

1989)

(a) (b)

Fig. 6 Schematic

representation of the mutation

operation (based on Goldberg

1989)
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Finally, mutation of a given chromosome in a given

generation will occur with probability Pmutation. To decide

whether mutation occurs, we use a binomial distribution

with parameter Pmutation. If the output is positive and

mutation occurs (which will happen with probability

Pmutation, when a random value u generated from a uniform

distribution U[0, 1] is such that u \ Pmutation), a random

integer M is generated with uniform probability in the

interval [1, N]. M indicates the location of the bit in the

chromosome that will be mutated or ‘flipped’; that is, as

illustrated in Fig. 6a, if the M-th bit is 0, it mutates to 1;

and if it is 1, it mutates to 0. If, on the other hand, the

outcome is negative (i.e., u C Pmutation), then nothing

happens and the chromosome is kept unchanged (Fig. 6b).

3.4 Representation of a Simple Genetic Algorithm

Figure 7 shows a flow diagram with the structure of the

simple genetic algorithm employed in this work. The pro-

cess starts with the generation of Nind individuals with

random genotypes. (That is, bits of chromosomes that rep-

resent each property of the stochastic discontinuity network

are randomly filled with 0s and 1s.) Next, we use an itera-

tive process in which, for each generation, we compute its

(scaled) fitness and we employ the reproduction, crossover

and mutation operations to obtain new generations of

individuals until a convergence criteria is achieved. (We

work with a specified number of generations, but other

stopping criteria based, for instance, on convergence of

estimated parameter values or on convergence of the fitness

function could have been employed as well.)

4 Application Examples

We tested the applicability of genetic algorithms for cali-

bration of stochastic discontinuity networks using several

example cases with the Poisson disk model. In addition,

and to illustrate the influence of the objective (fitness)

function and of the probabilities of crossover and mutation

on the performance of the genetic algorithm, we performed

several sets of analyses that are summarized in Table 1.

As indicated before, it is assumed that the orientation of

discontinuity sets is known, which means that we only need

to characterize the three remaining parameters of the net-

work: intensity, and mean and standard deviation of the

discontinuity size distribution. For each analysis (or GA)

type listed in Table 1, several test cases with different

reference (generation) parameter values were considered.

[A lognormal distribution of discontinuity radii was con-

sidered in all cases for both generation and GA inference;

for field data, in which case the type of distribution is

generally not known, the selection of the ‘best’ distribution

type is a complex task beyond the scope of this paper,

although flexible distributions that incorporate little a pri-

ori information could be a promising approach to tackle

this problem; see Jimenez-Rodriguez and Sitar (2006a)

for an example of their application to the inference of

trace length distributions.] The parameter values inferred

(estimated) with each GA, as well as their corresponding

relative errors, are listed in Table 2. (In all cases, the

GAs were defined to have Nind = 120 individuals and

Ngen = 1,000 generations.)

Fig. 7 Flow diagram of the simple genetic algorithm employed in

this work

Table 1 Summary of GAs tested in this work

Analysis w0 w1 w2 w3 w4 w5 w6 Pcrossover Pmutation

1 1.0 1.5 1.0 1.0 1.0 0.0 0.0 0.85 0.06

2 1.0 1.5 N0/Ntotal N1/Ntotal N2/Ntotal 0.0 0.0 0.85 0.06

3 1.0 1.5 1.0 1.0 1.0 0.0 0.0 0.80 0.03

4 1.0 1.5 1.0 1.0 1.0 0.0 0.0 0.95 0.03

5 0.0 1.5 0.5 ? 0.5N0/Ntotal 0.5 ? 0.5N1/Ntotal 0.5 ? 0.5N2/Ntotal 0.0 0.0 0.85 0.06

6 0.0 2.0 0.5 ? 0.5N0/Ntotal 0.5 ? 0.5N1/Ntotal 0.5 ? 0.5N2/Ntotal 1.0 1.0 0.85 0.06

7 0.0 1.5 0.5 ? 0.5N0/Ntotal 0.5 ? 0.5N1/Ntotal 0.5 ? 0.5N2/Ntotal 0.0 0.0 0.95 0.03
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Table 2 Summary of inference results for the different GAs considered

Case P32 lR rR

Gen (m2/m3) GA (m2/m3) Error (%) Gen (m) GA (m) Error (%) Gen (m) GA (m) Error (%)

1a 1.0 1.0 -0.8 5.0 5.0 -0.5 2.0 2.3 -13.3

1b 1.0 1.1 -6.7 10.0 10.3 -3.1 4.0 4.4 -9.4

1c 1.0 1.0 -4.1 20.0 19.0 4.8 8.0 7.8 2.3

1d 2.0 2.3 -12.9 5.0 5.8 -15.7 2.0 2.4 -18.8

1e 2.0 2.0 1.7 10.0 10.3 -2.9 4.0 4.1 -2.8

1f 2.0 2.1 -3.6 20.0 24.6 -23.1 8.0 1.5 81.8

1g 4.0 4.4 -9.1 5.0 5.0 0.1 2.0 2.6 -30.8

1h 4.0 4.0 -1.1 10.0 10.5 -5.3 4.0 3.7 6.8

1i 4.0 4.0 0.3 20.0 19.1 4.3 8.0 8.2 -2.1

2a 1.0 1.4 -38.9 5.0 5.0 -0.4 2.0 4.1 -106.8

2b 1.0 1.0 -4.2 10.0 11.4 -14.1 4.0 4.3 -6.3

2c 1.0 1.2 -17.6 20.0 14.9 25.6 8.0 12.6 -58.0

2d 2.0 3.5 -76.9 5.0 4.9 1.8 2.0 5.9 -194.1

2e 2.0 2.2 -7.9 10.0 11.3 -13.5 4.0 4.9 -22.2

2f 2.0 2.1 -5.8 20.0 17.9 10.4 8.0 8.9 -10.7

2g 4.0 3.7 6.7 5.0 4.4 11.7 2.0 2.2 -10.3

2h 4.0 4.8 -19.4 10.0 12.9 -28.8 4.0 4.5 -11.6

2i 4.0 4.3 -6.6 20.0 18.6 7.1 8.0 8.9 -11.4

3a 1.0 1.1 -7.0 5.0 6.0 -19.3 2.0 0.7 63.8

3b 1.0 1.0 -1.6 10.0 9.6 3.7 4.0 4.4 -9.1

3c 1.0 1.0 0.5 20.0 22.4 -11.8 8.0 5.9 26.2

3d 2.0 2.1 -6.4 5.0 4.7 5.2 2.0 2.5 -26.3

3e 2.0 2.1 -3.9 10.0 10.4 -4.0 4.0 3.9 1.9

3f 2.0 1.9 2.9 20.0 19.2 3.9 8.0 8.3 -3.6

3g 4.0 4.0 0.3 5.0 5.0 0.9 2.0 2.1 -4.0

3h 4.0 4.0 -0.6 10.0 10.7 -6.7 4.0 4.1 -1.7

3i 4.0 4.0 1.1 20.0 20.3 -1.4 8.0 6.9 13.9

4a 1.0 1.0 3.0 5.0 4.9 1.9 2.0 2.0 1.8

4b 1.0 1.0 0.6 10.0 10.2 -1.9 4.0 4.2 -5.3

4c 1.0 1.0 -2.5 20.0 23.2 -16.0 8.0 5.4 32.9

4d 2.0 2.1 -3.9 5.0 5.5 -9.4 2.0 1.8 7.7

4e 2.0 1.9 5.3 10.0 10.5 -4.8 4.0 4.3 -6.8

4f 2.0 2.3 -13.8 20.0 17.4 12.9 8.0 11.1 -38.5

4g 4.0 3.9 2.1 5.0 4.9 1.7 2.0 2.0 2.3

4h 4.0 3.7 8.0 10.0 9.7 3.3 4.0 3.7 6.9

4i 4.0 4.0 -1.0 20.0 20.5 -2.3 8.0 8.0 0.6

5a 1.0 1.0 -0.4 5.0 5.7 -13.6 2.0 1.2 40.4

5b 1.0 1.0 0.5 10.0 11.2 -12.1 4.0 2.8 29.2

5c 1.0 1.3 -28.7 20.0 15.5 22.4 8.0 12.4 -54.6

5d 2.0 1.9 3.9 5.0 4.8 4.0 2.0 1.9 5.8

5e 2.0 1.9 3.1 10.0 9.9 1.3 4.0 3.5 13.6

5f 2.0 2.3 -12.9 20.0 16.0 20.1 8.0 12.6 -57.3

5g 4.0 4.1 -2.0 5.0 5.8 -16.7 2.0 0.4 80.8

5h 4.0 4.0 0.2 10.0 10.4 -3.9 4.0 4.0 -1.0

5i 4.0 3.8 4.6 20.0 23.1 -15.4 8.0 1.9 76.5

6a 1.0 1.0 -0.9 5.0 4.8 3.4 2.0 2.1 -2.6

6b 1.0 1.1 -13.6 10.0 10.8 -8.3 4.0 4.3 -8.2
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It can be observed that the performance (i.e. the infer-

ence capabilities) of the GA varies widely, and also that the

GAs corresponding to analyses 3 and 4 seem to produce,

on average, the best inference results with the smallest

estimation errors. In other words, results suggest that

genetic algorithms with a simple fitness function (defined

in terms of the unweighted number of total and of censored

traces only, without the use of trace length information)

and with a relatively low probability of mutation (Pmuta-

tion = 0.03), seem to provide the best inference results for a

relatively wide interval of crossover probabilities (with

Pcrossover in the range between 0.80 and 0.95).

In addition, results also show (see column 4 for analy-

ses 3 and 4 in Table 2) that the inference capabilities for

the intensity measure, P32, are very good (relative errors of

less than 10% are achieved in all but one case). Further-

more, they indicate (see column 7) that the inference

capabilities for the mean size of discontinuities, lR, is also

quite good (relative errors of less than 20% are obtained in

all cases), and that the estimated values of the standard

deviation of the discontinuity size distribution, rR, are

significantly less accurate. Fortunately, however, previous

research has shown (see e.g. Jimenez-Rodriguez and Sitar

2008) that P32 and lR are the parameters with the strongest

influence on some important engineering problems such as

the formation of removable blocks in rock slopes, hence

making such inference errors on the variability of discon-

tinuity sizes have a significantly smaller influence on

results computed with the calibrated network.

Figure 8 shows an example of the inference capabilities

of the GA in terms of the inferred maps of discontinuity

traces. To that end, in Fig. 8a we show the reference trace

map that is assumed to be observed in a reference outcrop,

and in Fig. 8b we show the trace map associated to the

‘best’ solution obtained with the GA. (We used a GA with

fitness function defined in terms of the number of traces

only, with Pcrossover = 0.95 and Pmutation = 0.03, and with

generation values given by P32 = 2m2/m3, lR = 10 m, and

rR = 4 m; this analysis is labelled 4e in Table 2, and it can

be considered as a case with ‘typical’ accuracy, since it has

estimation errors of about 5%.) Results show that both

trace maps are statistically very similar, and also that the

number of observed and simulated traces of each type (and

of each type of censored traces) are very similar as well

(see captions in Fig. 8).

Figure 9 shows an example (for analysis 4c) of the

evolution of the intensity parameter, P32, corresponding to

the ‘best’ individual (i.e., the individual with highest fitness

value) in each generation. Similarly, Fig. 10 shows an

example of the evolution for each generation of the mean

of the discontinuity size distribution, lR, for the ‘best’

individual in the population, whereas Fig. 11 shows the

evolution of the ‘best’ estimation of the standard deviation

of discontinuity sizes, rR. (In Figs. 9a, 10a, 11a we plot the

Y axis with dimensions given by the search interval

[xmin, xmax] used for parameter inference; in addition,

a dashed line is employed to indicate the original para-

meter values employed for generation of discontinuities.

Table 2 continued

Case P32 lR rR

Gen (m2/m3) GA (m2/m3) Error (%) Gen (m) GA (m) Error (%) Gen (m) GA (m) Error (%)

6c 1.0 1.3 -31.9 20.0 19.7 1.4 8.0 14.8 -84.7

6d 2.0 2.0 2.0 5.0 5.1 -2.0 2.0 1.8 7.6

6e 2.0 2.1 -5.8 10.0 10.9 -9.4 4.0 3.7 6.4

6f 2.0 2.1 -4.4 20.0 22.7 -13.7 8.0 5.5 30.7

6g 4.0 4.0 0.9 5.0 4.9 2.0 2.0 2.1 -3.6

6h 4.0 4.0 0.2 10.0 10.5 -5.5 4.0 3.6 10.2

6i 4.0 3.8 5.0 20.0 22.9 -14.4 8.0 4.1 48.6

7a 1.0 1.0 -3.0 5.0 4.6 7.6 2.0 2.2 -7.9

7b 1.0 1.0 1.1 10.0 10.4 -3.7 4.0 3.8 4.3

7c 1.0 1.0 -1.8 20.0 23.1 -15.7 8.0 5.3 34.1

7d 2.0 1.9 3.5 5.0 4.5 9.2 2.0 2.2 -7.7

7e 2.0 2.0 1.5 10.0 10.5 -5.1 4.0 4.3 -7.6

7f 2.0 1.9 2.6 20.0 22.0 -10.0 8.0 4.2 47.6

7g 4.0 3.9 1.5 5.0 5.8 -16.2 2.0 0.4 77.9

7h 4.0 4.1 -2.9 10.0 9.9 0.6 4.0 4.1 -3.4

7i 4.0 4.0 -0.4 20.0 22.5 -12.3 8.0 6.5 18.2
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Similarly, in Figs. 9b, 10b, and 11b we plot a zoomed view

of the obtained solutions for better visualization of con-

vergence and fluctuations.)

It can be observed that, in all cases, there is an initial

rapid convergence of the estimated parameter towards

values very similar (within the error range discussed above

and shown in Table 2) to those employed for generation of

the ‘observed’ network used as reference in the GA. It is

also interesting to note that the rate of convergence

decreases after the first few generations, although it seems

to continue (at a more reduced rate) even after many

generations have occurred. In addition, it can be observed

that, for some generations, there are (slight) oscillations of

the estimated parameters values (the reason for which is

discussed below). [Convergence of the algorithm with real

(i.e., field) data could be expected to be somewhat slower,

since the quality of field-observed trace maps would be

lower and, at the same time, would be affected by

aspects—such as orientation variability within joint sets—

not considered herein.]
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Fig. 8 Comparison between reference (observed) discontinuity trace

map and the discontinuity trace map obtained as solution of the GA
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for the best individual in successive generations of the genetic
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Similarly, Fig. 12 shows the evolution of the values of

the fitness function for the ‘best’ individual in each gen-

eration. (Such individual will be therefore considered ‘the

solution’ to the parameter estimation problem.) In addition,

Fig. 12 also shows the evolution of the average fitness for

all individuals in each generation. (As expected, the aver-

age fitness is always smaller than the maximum.) As in the

case of the parameter estimates, it can be observed that

there is a rapid convergence in terms of the fitness of

solutions during the first few generations of the algorithm,

so that both the maximum and average fitness quickly

reach a plateau in which small oscillations are observed.

In a general case, the slight oscillations that occur both

for the estimated parameters values (Figs. 9, 10, 11) and

also for the values of the fitness function (Fig. 12) could be

explained as a result of the evolutionary nature of GAs

unless a ‘keep the best’ strategy (i.e. elitism) is employed.

However, in this case we are indeed keeping the solution

given by the best individual of each iteration (i.e. we are

using elitism) and, therefore, this is not exactly the reason

for the observed oscillations. Alternatively, the explanation

is that we are estimating parameters of statistical distri-

butions using the realizations of such distributions, which

are of course random. This means that different realizations

of the discontinuity network performed with the same

values of the statistical parameters used for generation of

discontinuities will be different (because the generated

discontinuities are random and, therefore, different) and,

accordingly, will have different fitness values. This means

that individuals (and their corresponding genotypes) have

different fitness values at different moments of the gener-

ation evolution, hence explaining the observed (and slight)

oscillations of the computed fitness and the estimated

parameter values.

5 Conclusions

We present a novel approach for calibration of stochastic

discontinuity network parameters based on genetic algo-

rithms. In particular, we present an application example in

which simple genetic algorithms are employed to calibrate

the parameters of discontinuity networks represented with

the Poisson disk model. The parameters of the model are

encoded as chromosomes using a binary representation;

such chromosomes evolve as successive generations of a

randomly generated initial population, subjected to the

operations of selection, crossover and mutation, which are

defined in the genetic algorithm in a similar fashion as to

how they occur in nature.

To validate the approach, we present examples of

application of the method to cases in which the original

parameters of the discontinuity networks are known. Using

discontinuity trace maps produced by such networks,

we use the proposed methodology to back-calculate

the parameters of the stochastic discontinuity network,

which allows us to make assessments about the inference
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Fig. 11 Evolution of inferred values of the standard deviation of
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the genetic algorithm
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capabilities of the model using different objective functions

and different probabilities of crossover and mutation.

Results show that the predictive capabilities of genetic

algorithms significantly depend on the type of objective

function considered; in particular, results show that

parameter estimates are significantly improved when the

objective function only considers the total number of dis-

continuities observed and the number of discontinuity tra-

ces with different censoring conditions (rather than when

the mean and the standard deviation of trace lengths are

considered). Similarly, results suggest that the predictive

capabilities of the genetic algorithm improve for relatively

low values of the mutation probability (Pmutation & 0.03),

whereas changes of the crossover probability do not seem

to have such a significant effect (results of similar quality

being obtained for Pcrossover in the range between 0.8 and

0.95). Finally, results also show that the calibration capa-

bilities of genetic algorithms can be acceptable for prac-

tical engineering applications, since convergence is fast

and, in most cases, can be expected to provide parameter

estimates with relatively small errors (of, say, less than

10–20%) for those parameters of the network (such as

intensity and the mean size of discontinuities) that have the

strongest influence on many engineering applications.
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