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Abstract

The characterization of discontinuities within rock masses is often accomplished using stochastic discontinuity network models, in

which the stochastic nature of the discontinuity network is represented by means of statistical distributions. We present a flexible

methodology for maximum likelihood inference of the distribution of discontinuity trace lengths based on observations at rock outcrops.

The inference problem is formulated using statistical graphical models and target distributions with several Gaussian mixture

components. We use the Expectation–Maximization algorithm to exploit the relations of conditional independence between variables in

the maximum likelihood estimation problem. Initial results using artificially generated discontinuity traces show that the method has

good inference capabilities, and inferred trace length distributions closely reproduce those used for generation. In addition, the

convergence of the algorithm is shown to be fast.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Discontinuities have a significant impact on the deform-
ability, strength, and permeability of rock masses [1,2];
consequently, their characterization is an important
element of rock mass characterization [1–5]. However,
deterministic characterization of individual discontinuities
in the rock mass is usually an insurmountable site
characterization challenge and, in general, it is only feasible
for major features. The characterization of other (i.e., not
major) discontinuities can be, on the other hand, accom-
plished using stochastic discontinuity network models. In
these models, the rock mass is represented as an
assemblage of discontinuities intersecting a volume of
intact rock and the stochastic nature of the discontinuity
network is represented using statistical distributions [6,7];
in some cases, additional non-geometrical aspects are
e front matter r 2006 Elsevier Ltd. All rights reserved.
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included to imitate geological processes leading to the
formation of discontinuities within the rock mass [5,8].
To be able to use stochastic discontinuity network

models in engineering applications, the problem of
calibration of network parameters remains, and we need
methods for the characterization of discontinuity networks
based on information available at the design stage. In
particular, one of the main difficulties in estimating
discontinuity sizes is the fact that direct observation of
their complete three dimensional extent is not possible. As
a result, the distribution of discontinuity dimensions is
commonly inferred using information about the distribu-
tion of trace lengths at rock exposures by means of, for
example, stereological or fractal considerations [9–15].
Hence, proper characterization of the distribution of

trace lengths is an essential step in the characterization of
the distribution of discontinuity dimensions. There are two
additional difficulties in the solution of the problem of
estimating the trace length distribution: The first is that the
observations of discontinuity traces are biased [15–20]; and
the second is due to the complexity of the geological pro-
cesses leading to the development of rock discontinuities
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[11]. Such complexity is responsible for uncertainties about
the most adequate type of distribution to be used in real
applications. Exponential and lognormal distributions are
most commonly employed (see e.g., [21,22]), but there are
cases in which bi-modal types of distributions—which
cannot be properly described by the distributions men-
tioned above—seem to be more adequate, as suggested
by case histories or geomechanical modeling results (see
e.g., [18,23,24]).

To deal with these problems, the measured (i.e., biased)
trace length distribution is commonly estimated first; then,
it is assumed that the real (i.e., unbiased) trace length
distribution has the same distribution form, so that only
the parameters of the distribution (usually the mean and
variance) need to be obtained [7,21]. Several methods for
the estimation of the mean of the real distribution of trace
lengths have been proposed [17,19,25,26]; the variance can
be estimated by assuming that the values of the variances
of the observed and real trace length distributions are equal
[7] or, better yet, by assuming that the coefficients of
variation of both distributions are equal [21]. Additional
statistical approaches have been used to estimate the
distribution of discontinuity trace lengths: Song and Lee
[20] estimated trace lengths using areal sampling and
probabilistic relations derived for the Poisson disk model;
and maximum likelihood estimation methods for scanline
or areal sampling have been proposed as well [18,23,27–29].

In this work, we present a novel approach based on the
use of statistical graphical models for maximum likelihood
inference of the real (i.e., corrected for biases) distribution
of discontinuity trace lengths [30,31]. The identification of
the type or structure of the trace length distribution is not
our main interest; rather, we are interested in working with
a model that provides reasonable estimates of the prob-
ability distribution without making strong assumptions
about its type. Accordingly, we avoid the assumption that
the measured and real trace lengths distributions are of the
same type, and we approach the inference problem by
considering a broad family of target mixture distribution
models. That is, we work with a target distribution that is
flexible enough to mimic the main features of the real (and
unknown) distribution of trace lengths, allowing the
observed data to ‘‘select’’ the most adequate distribution
for each case.

We believe that this type of model based on a statistical
analysis of observed discontinuity trace data will gain even
more significance in the years to come, as traditional
methods for discontinuity surveying in rock engineering
[32] are being replaced by automated techniques, which
allow more efficient and detailed acquisition of disconti-
nuity data [33–35].

2. Generation and sampling of discontinuities

We assume that the rock outcrop is a planar surface and
that the sampling domain (where traces are observed) is a
rectangular region within the rock outcrop of dimensions
Wo �Ho. We further assume that the sampling domain is
contained within the generation domain, where we use
Monte Carlo simulation to generate populations of
discontinuity traces. We consider the size of the generation
domain to be ‘‘much larger’’ than the size of the sampling
domain and ‘‘much larger’’ than the length of generated
traces, so that the consequences of biases, edge effects, or
both are negligible in the generation process. (For a
detailed analysis of the influence of stochastic network
parameters in the occurrence of edge effects, see [36].) We
also assume that discontinuities are parallel and flat
circular disks of negligible thickness, with their centers
uniformly distributed in space (i.e., the Poisson disk model
[37]); accordingly, discontinuity traces are parallel straight
lines of negligible width, with centers uniformly located
within the generation domain.
The Poisson disk model has been extensively used in

rock mechanics applications (see e.g., [5,6,9,20,21,29,
36–41]). Here, we use the Poisson disk model because it
has been found to generate fractures and fracture traces
that are similar to natural fracture patterns in many cases
and because it has been recognized that some fracture
systems are best described by this type of models [5,11].
Additional advantage of the Poisson disk model is that it is
simple and easy to program [5]; it is also mathematically
convenient [14], allowing simple derivations of analytical
expressions.
In other cases, however, characteristics of fracture

systems in rock masses are best described by power laws
and fractal geometry [11,12], and fractals have been widely
used to describe fracture geometry (see e.g., [42–46]). (For
further arguments in favor of fractals, see [5,11].) There-
fore, the method proposed herein should not be applied to
rock masses with a demonstrable fractal system without
due consideration to the errors that may be introduced.
Fig. 1 illustrates the types trace maps, sampling domains,

and generation domains used in this work.

3. Existing biases

3.1. Description of types of bias

Observations of discontinuity traces at rock exposures
are subjected to orientation, truncation, censoring and size
bias (e.g., [16–21]). The terms curtailment and trimming

have also been used to refer to censoring and truncation
[15], but we chose to use the former terminology for overall
consistency with the rock mechanics literature.
In this work, we consider the commonly used model of a

single set of parallel traces (see e.g., [15,20,25,26,29,47,48])
and, therefore, orientation bias does not affect the results
discussed herein. Methods for correction of orientation
bias—including the use of circular domains—are quite
common [16,21,49–51], and extensions to consider trace
data with variable orientation are also available [23,52].
Similarly, truncation bias is not significant in the context of
block formation, since the truncation threshold may be



ARTICLE IN PRESS

Wg

Hg

generation
domain

sampling
domain

(a)

Wo

Ho

sampling
domain

(b)

Fig. 1. Generation and sampling of discontinuities, with typical examples

of observed trace maps. (a) Size-biased sample of observed traces

(observations not censored), (b) observed traces (censored) for the sample

above.

1Facing a similar problem—in the context of length estimation of textile

fibers—Cox [54] proposed a correction for size bias, in which he

considered the probability of sampling a certain fiber with a sampling

line to be proportional to the fiber length. Such correction has later been

extensively employed in the context of scanline sampling of rock

discontinuities (e.g., [15,18,47]).
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easily decreased so that it has negligible influence on the
formation of medium to large size blocks, which are of
main interest in engineering design. Truncation bias could
be significant, however, in cases in which flow through
discontinuities in the rock mass is important. Care should
be taken in such cases so that the truncation threshold is
decreased to an adequate low value.

The problem of censoring bias is, on the other hand, a
more significant issue, since it prevents traces from being
completely observed. That is, censoring bias causes
observed trace lengths to be shorter than the corresponding
real traces. This has negative safety consequences in the
analysis, as larger discontinuities are more likely to
produce larger blocks, hence, in the event of failure,
greater consequences; similarly, large discontinuities can
also serve as preferential paths for underground flow.
Highly censored data sets obtained when discontinuities
are much larger than the size of the outcrop impose some
additional challenges (see e.g., [17]) that cannot be easily
overcome without additional assumptions. In such cases,
geophysical methods provide a promising tool to char-
acterize discontinuity sizes but, despite progress, further
research is needed before they can be widely applied to
rock engineering projects [11,24]. Empirical relations
between size and other discontinuity parameters (e.g.,
aperture) provide another alternative to infer sizes of
discontinuities much larger than the size of the outcrop
[11,53].
Finally, size bias occurs because longer traces are more

likely to be sampled than shorter ones. One alternative
would be to ignore size bias, with the argument that this
simplification is on the side of safety. We believe, however,
that it is preferable to develop as accurate methods of
estimation as possible, so that more efficient engineering
solutions can be achieved. Thus, a solution to the problem
of size bias is discussed next.

3.2. Correction for size bias

Fig. 1(a) shows an example of one size biased sample of
discontinuity traces. To correct for size bias, we need to
estimate the probability density function (PDF) of the real
(i.e., unbiased) trace length distribution, f ðl Þ, from
estimates of the distribution of total lengths of observed
traces (i.e., not censored, but size biased), f 0ðl Þ. As trace
centers are assumed to be uniformly distributed within the
generation domain and traces are oriented perpendicular to
the horizontal sides of the rectangular sampling domain,
the probability of a trace of length L ¼ l intersecting the
sampling domain is proportional to l þHo, where Ho is
the vertical dimension of the sampling domain [29] (see
Fig. 1(b)).1 That is,

f 0ðl Þ / K1ðl þHoÞf ðl Þ, (1)

or equivalently,

f ðl Þ / K2
f 0ðl Þ

l þHo
. (2)

Imposing the condition that f ðl Þ integrates to one, we
obtain the proportionality constant to be
K2 ¼ ð

R1
0
ðf 0ðl Þ=l þHoÞdl Þ�1. Therefore, the PDF of the

distribution of inferred ‘‘real’’ (i.e., unbiased) discontinuity
trace lengths is given by:

f ðl Þ ¼
f 0ðl Þ

ðl þHoÞ
R1
0

f 0ðxÞ
xþHo

dx
, (3)

where x is an integration variable along values of l.

4. Statistical graphical model

We use target mixture distributions to overcome
uncertainties about the most adequate type of trace length
distribution to be used in real applications. Within this
context, mixture distributions are used as a ‘‘mathematical
artifact’’ that provides increased inference flexibility and
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Fig. 2. Random variables for different types of discontinuity traces.

Table 1

Possible censoring conditions for a discontinuity trace

Value Description

C ¼ �1 Not observed: The discontinuity trace is located outside of

the sampling domain.

C ¼ 0 No censoring: The discontinuity trace is located inside of the

sampling domain and it does not intersect its boundaries.

C ¼ 1 Censoring on one side: Only one of the extremes of the

discontinuity trace is observed; i.e., the other one is

censored.

C ¼ 2 Censoring on both sides: None of the extremes of the

discontinuity trace are observed; i.e., both of them are

censored.

L

Z

C

Lo

No

Fig. 3. Proposed graphical model.
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broadens the class of distributions that may be adequately
reproduced by the model. For a mixture of K compo-
nents, p � ðp1; . . . ;pK Þ is the set of mixture propor-
tions (with piX0 and

PK
i¼1pi ¼ 1),2 and y � ðy1; . . . ; yK Þ

is the set of component distribution parameters. (i.e., Y �
ðp; yÞ is the complete set of parameters of the mixture.)
Then, if pið�jyiÞ is the PDF of the distribution of component
i, the PDF of the mixture distribution is given by [55]:

pð�jYÞ ¼
XK

i¼1

pipið�jyiÞ. (4)

We characterize each trace observed (up to a total of
No), by means of a number of random variables (see
Fig. 2). L represents the total trace length of observed
discontinuities; due to censoring bias (see Section 3), this
random variable is not observed in general. Alternatively,
we have two other random variables that are observed: Lo

represents the observed trace length (it is therefore a lower
bound for L); and C represents the corresponding
censoring conditions. Depending on the number and the
type of intersections (if any) between the discontinuity
trace and the boundaries of the sampling domain, we
consider the censoring conditions described in Table 1.
Finally, we use Z (a multinomial random variable with K

possible values), to represent the mixture component to
which each observed trace is assigned.

Based on the definitions above, we propose the statistical
graphical model presented in Fig. 3. Edges joining random
2There may be additional constraints on the domain of the parameters

yi that form an acceptable solution set for the distribution of each mixture

component. For instance, if we use normal random variables as mixture

components, an additional constraint is that they should all have positive

variance.
variables denote statistical dependence between them, and
shaded nodes are used to represent observed random
variables. In addition, the plate representation in our
graphical model denotes statistical independence between
observations; that is, our sample is composed of a set of No

observations of statistically independent and identically
distributed random variables.

5. Estimation of trace length distribution parameters

5.1. Introduction

To illustrate the maximum likelihood inference metho-
dology, we use X to denote the set of observed variables,
and we use Y to denote the set of unobserved variables.
The complete probability model is then given by pðx; yjYÞ,
where Y is the set of parameters of the model. If random
variables Y were observed, the log likelihood of the model
(which we refer to as the complete log likelihood ) would be
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3In the derivations below, l, lo, c, and z refer to the total length,

observed length, censoring condition, and mixture component corre-

sponding to the n-th trace of the No observed traces. To lighten the

notation, however, we avoid making explicit reference to n when using

these variables.
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computed as:

lcðY; x; yÞ � log pðx; yjYÞ. (5)

Random variables Y are, however, not observed by
definition, and the likelihood of the model for observed
data X ¼ x has to be computed by marginalizing over the
unobserved variables in Eq. (5). The incomplete log

likelihood is then given by:

lðY; xÞ � log pðxjYÞ ¼ log
X

y

pðx; yjYÞ, (6)

where we use the summation sign to indicate margin-
alization—the derivation would be equivalent (with the use
of integration) for continuous random variables.

Unlike in Eq. (5), the logarithm in Eq. (6) is separated
from the probability term by the marginalization (i.e.,
summation or integration) expression. This has the
undesirable consequence that we cannot directly use
the factorizations (i.e., conditional independence rela-
tions) of pðx; yjYÞ to simplify the maximization of the
logarithmic term in Eq. (6); that is, the model does not
‘‘decouple’’.

The expectation–maximization (EM) algorithm provides
a general method for maximum likelihood parameter
estimation in graphical models with unobserved variables.
An alternative approach would be to use a nonlinear
optimization algorithm, such as conjugate gradient or
Newton–Raphson [56,57]. The EM algorithm is applicable
to arbitrary graphical models with unobserved vari-
ables, with the advantage that it allows us to exploit the
independence structure of the probability model to its
full extent [56,57]. This provides significant computa-
tional advantages, particularly for mixture models with
several Gaussian components, which we use as target
distributions.

Here, we present a brief introduction to the EM
algorithm based on Jordan [56]. For a more in-depth
discussion, the seminal reference is Dempster et al. [58];
Redner and Walker [55] discuss the problem of maximum
likelihood estimation in the context of mixture densities;
additional references of interest are Cowell et al. [59] and
Xu and Jordan [57].

5.2. The EM algorithm

The EM algorithm uses an averaging distribution, qðyjxÞ,
to obtain the expectation of the complete log likelihood
with respect to the unobserved variables in the model. The
expected complete log likelihood is defined as:

hlcðY; x; yÞiq �
X

y

qðyjx;YÞlcðY; x; yÞ ð7Þ

¼
X

y

qðyjx;YÞ log pðx; yjYÞ. ð8Þ

In that way, the uncertainty introduced by the unknown
values of Y is removed and, for a set of observations
X ¼ x, the expected complete log likelihood is a determi-
nistic quantity that only depends on Y. It also inherits the
good computational properties of the complete log like-
lihood, since the log expression in Eq. (8) is directly
applied to the complete probability model, allowing us to
exploit statistical independence relations in the graphical
model.
For an arbitrary distribution qðyjxÞ, we define an

auxiliary function Lðq;YÞ which is a lower bound to the
log likelihood:

Lðq;YÞ �
X

y

qðyjxÞ log
pðx; yjYÞ

qðyjxÞ
plðY; xÞ. (9)

The EM algorithm provides a coordinate ascent algo-
rithm on Lðq;YÞ, with the following steps:

E-step:

qðtþ1Þ ¼ argmax
q

Lðq;YðtÞÞ, (10)

M-step:

Yðtþ1Þ ¼ argmax
Y

Lðqðtþ1Þ;YÞ. (11)

The M step may be shown to maximize the expected
complete log likelihood with respect to Y. At each step of
the algorithm, the maximization in the E step is achieved
by the election of a distribution of the form
qðtþ1ÞðyjxÞ ¼ pðyjx;YðtÞÞ. Such averaging distribution not
only maximizes the auxiliary function, but also assures that
the auxiliary function and the log likelihood are equal at
each EM iteration. Then, as Lðq;YðtÞÞ is a lower bound for
lðYðtÞ; xÞ, finding a local maximum of the auxiliary function
is equivalent to finding a local maximum of the log
likelihood, and the EM algorithm therefore provides a
local optimum to the maximum likelihood estimation
problem.
5.3. Likelihood functions

Let us use Dc to denote the complete set of data that we
would have if we were able to observe the unobserved
variables of the model, and use Do to refer to the observed

data that we actually have; that is, Do is given by the set of
observed trace lengths and censoring conditions of the No

traces observed in our sample. Based on Do, we compute
the (incomplete) log likelihood as:3

lðY;DoÞ ¼ log pðDojYÞ ð12Þ

¼
XNo

n¼1

log pðc; lojYÞ. ð13Þ
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If we had observations of all variables in Dc, the
complete log likelihood would be computed as:

lcðY;DcÞ ¼ log pðDcjYÞ ð14Þ

¼
XNo

n¼1

log pðz; l; c; lojYÞ. ð15Þ

Using the averaging distribution qðz; ljc; loÞ, we can also
compute the expected complete log likelihood, as:

hlcðY;DoÞiq ¼
XNo

n¼1

X
z

Z
l

qðz; ljc; loÞ

� log pðz; l; c; lojYÞdl, ð16Þ

and the auxiliary function results in:

Lðq;YÞ ¼
XNo

n¼1

X
z

Z
l

qðz; ljc; loÞ log
pðz; l; c; lojYÞ

qðz; ljc; loÞ
dl. (17)

6. Complete probability model

The expected complete log likelihood (see Eq. (16)) is
computed as a function of the complete probability model
pðz; l; c; lojYÞ. This distribution may be factorized consider-
ing the relations of conditional independence in the
graphical model, as:

pðz; l; c; lojYÞ ¼ pðz; ljYÞpðcjl;YÞ pðlojc; l;YÞ ð18Þ

¼
YK
i¼1

pif
0
iðljyiÞ

� �zi

 !
pðcjl;YÞ

�pðlojc; l;YÞ, ð19Þ

where f 0iðljyiÞ is the PDF of the ith component of the target

mixture distribution of total lengths for sampled (i.e., size
biased) traces, f 0ðl Þ.

To complete the probabilistic description of the factor-
ized model, however, we need expressions for the condi-
tional distributions pðcjl;YÞ and pðlojc; l;YÞ in Eq. (19). To
that end, we identify regions where centers of traces of
length L ¼ l need to be located to have the censoring
conditions presented in Table 1 (See Figs. 4 and 5).4 The
relative sizes of such regions (with respect to the size of the
region for which traces of that length are sampled) are used
to derive pðcjl Þ and pðlojc; l Þ for each censoring condition.

6.1. Traces with no censoring

In this case traces are completely contained within the
sampling domain and their centers are located within
the No censoring region in Fig. 4. As trace centers are
4Note that such regions are completely defined (i.e., deterministic) once

the trace length is specified. Also, as expected given the proposed graphical

model, the conditional distributions pðc; l;YÞ and pðlojc; l;YÞ are

independent of the parameters of the target distribution. (i.e., pðcjl;YÞ �
pðcjl Þ and pðlojc; l;YÞ � pðlojc; l Þ.) Accordingly, to lighten the notation,

we avoid further reference to these parameters in the derivations of pðcjl Þ

and pðlojc; l Þ.
uniformly located within the generation domain (see
Section 2), the distribution pðC ¼ 0jl Þ can be computed
considering the size of the No censoring region with respect
to the total size of the region for which traces with any
censoring condition are sampled. We obtain:

pðC ¼ 0jl Þ ¼

Ho � l

Ho þ l
if 0ploHo;

0 otherwise.

8<
: (20)

The observed trace length is assured to be equal to the
real length (i.e., l � lo); accordingly, the conditional
distribution of observed trace lengths is given by:

pðlojC ¼ 0; l Þ ¼
dðl � loÞ if 0ploHo;

0 otherwise,

(
(21)

where dðl � loÞ is the (continuous) Dirac delta function.
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Table 2

Statistical distributions and intensity values used for generation of

discontinuity traces

(a) Distribution types and parameters

Exponential Lognormal

m [m] m [m] s [m]

5.0 5.0 2.0

10.0 10.0 4.0

15.0 20.0 8.0

20.0

30.0

(b) Intensity values

P22 ½m=m2�

0.5

1.0

2.0

5.0
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6.2. Traces censored on one side

The conditional distribution pðC ¼ 1jl Þ is also computed
using the assumption of uniform location of trace centers
within the generation domain, and considering the size of
the Censoring on one side regions in Figs. 4 and 5 with
respect to the total size of the region for which traces are
sampled. We obtain:

pðC ¼ 1jl Þ ¼

2l

Ho þ l
if 0ploHo;

2Ho

Ho þ l
if lXHo;

0 otherwise.

8>>>><
>>>>:

(22)

Since we assume that the distribution of trace center
locations is uniform, the conditional distribution of
observed trace lengths pðlojC ¼ 1; l Þ is given by:

pðlojC ¼ 1; l Þ ¼

1

l
if 0plopl; loHo;

1

Ho
if 0plooHo; lXHo;

0 otherwise.

8>>>><
>>>>:

(23)

6.3. Traces censored on both sides

In this case the trace lengths are longer than the sampling
domain dimension (i.e., lXHo). Using the assumption of
uniformly distributed trace centers, the distribution pðC ¼

2jl Þ can be computed considering the relative size of the
Censoring on both sides region in Fig. 5 with respect to the
size of the region for which traces with any censoring
condition are sampled. We obtain:

pðC ¼ 2jl Þ ¼

l �Ho

l þHo
if lXHo;

0 otherwise.

8<
: (24)

The observed trace length is assured to be equal to the
sampling domain dimension (i.e., lo � Ho); accordingly,
the conditional distribution of observed trace lengths may
be expressed in terms of the (continuous) Dirac delta
function, as follows:

pðlojC ¼ 2; l Þ ¼
dðlo �HoÞ if lXHo;

0 otherwise.

�
(25)

7. Averaging distribution

As discussed in Section 5.2, the distribution
qðz; ljc; lo;YÞ ¼ pðz; ljc; lo;YÞ assures that the solution
obtained with the EM algorithm provides a local optimum
of the log likelihood. Having taken into account the
conditional independence of Z with respect to C and Lo

that is implied by the graphical model, we may express
pðz; ljc; lo;YÞ as:

pðz; ljc; lo;YÞ ¼ pðzjl;YÞpðljc; lo;YÞ. (26)
We start with the distribution pðzjl;YÞ. We assume that
Zi ¼ 1 if the observed trace is assigned to the ith
component of the mixture and Zi ¼ 0 otherwise, so thatPK

i¼1z
i ¼ 1. Using Bayes theorem, we obtain:

pðZi ¼ 1jl;YÞ ¼
pif
0
iðljyiÞ

f 0ðljYÞ
. (27)

The conditional distribution pðljc; lo;YÞ is then obtained
as:

pðljc; lo;YÞ ¼
pðl; c; lojYÞR1

lo
pðx; c; lojYÞdx

, (28)

where

pðl; c; lojYÞ ¼ f 0ðljYÞpðcjl Þpðlojc; l Þ, (29)

and pðcjl Þ and pðlojc; l Þ are obtained as in Section 6. The
distributions for each censoring case are derived below.

7.1. Traces with no censoring

Total trace lengths are identical to observed lengths in
this case. The conditional distribution may be expressed as:

pðljC ¼ 0; lo;YÞ ¼
dðl � loÞ if 0olooHo;

0 otherwise.

�
(30)

7.2. Traces censored on one side only

We start from Eq. (28), and we marginalize with respect
to the (unobserved) trace length. Substituting Eqs. (22) and
(23) back into Eq. (29), we obtain the following distribu-
tion (defined for 0olooHo and lX0, with pðljC ¼

1; lo;YÞ ¼ 0 otherwise):

pðljC ¼ 1; lo;YÞ ¼
ð1=ðl þHoÞÞ f

0
ðljYÞR1

lo
ð1=ðxþHoÞÞ f

0
ðxjYÞdx

. (31)
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7.3. Trace censored on both sides

We marginalize with respect to the (unobserved) trace
length in Eq. (28), and we substitute (24) and (25) back
into the probability model in Eq. (29), obtaining the
following distribution (for lo ¼ Ho and lXHo; with
pðljC ¼ 2; lo;YÞ ¼ 0 otherwise):

pðljC ¼ 2; lo;YÞ ¼
ððl �HoÞ=ðl þHoÞÞ f

0
ðljYÞR1

lo
ððx�HoÞ=ðxþHoÞÞ f

0
ðxjYÞdx

.

(32)
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Fig. 6. Computed parameter estimates when an exponential distribution is

used for generation and target. (a) P22 ¼ 0:5m�1, (b) P22 ¼ 5:0m�1.
8. M step optimization
The M step of the EM algorithm is equivalent to
maximizing the expected complete log likelihood with
respect to the parameters of the target trace length
distribution. Substituting pðz; l; c; lojYÞ, and qðz; ljc; lo;YÞ
(see Eqs. (19) and (26)), back into the expected complete
log likelihood in Eq. (16), we obtain:

hlcðY;DoÞiq ¼
XNo

n¼1

X
z

Z
l

pðzjl;YðtÞÞpðljc; lo;YðtÞÞ

�
XK

i¼1

zi log ðpðtþ1Þi f 0iðljy
ðtþ1Þ
i ÞÞ

 

þ log pðcjl Þ þ log pðlojc; l Þ

!
dl, ð33Þ

where the ðtÞ superscript indicates known estimates of the
target distribution parameters at the previous step, and the
ðtþ1Þ superscript indicates unknown parameters (which we
aim to compute) that maximize the expected complete log
likelihood at the current M step. The ðtþ1Þ parameters only
appear in the first term of the expression in parenthesis in
Eq. (33). Using that term, we obtain:

XNo

n¼1

Z
l

pðljc; lo;YðtÞÞ
XK

i¼1

pðZi ¼ 1jl;YðtÞÞ

� log ðpðtþ1Þi f 0iðljy
ðtþ1Þ
i ÞÞdl. ð34Þ
Table 3

Computed parameter estimates, and their variability, when an exponential

distribution is used for generation and target

mg [m] Eðm̂EMÞ [m] Var½m̂EM� ½m
2� dðm̂EMÞ

(a) P22 ¼ 0:5m�1

5.00 4.94 0.02 0.06

10.00 9.94 0.22 0.15

15.00 15.13 0.43 0.17

20.00 19.90 2.82 0.38

30.00 30.15 4.55 0.39

(b) P22 ¼ 1:0m�1

5.00 5.02 0.01 0.05

10.00 9.87 0.10 0.10

15.00 15.12 0.19 0.11

20.00 20.09 0.85 0.21

30.00 30.15 2.28 0.27

(c) P22 ¼ 2:0m�1

5.00 5.02 0.02 0.06

10.00 9.99 0.07 0.08

15.00 14.81 0.17 0.11

20.00 20.06 0.67 0.18

30.00 29.70 1.36 0.21

(d) P22 ¼ 5:0m�1

5.00 4.99 0.00 0.02

10.00 9.94 0.04 0.06

15.00 14.99 0.09 0.08

20.00 19.99 0.17 0.09

30.00 30.05 0.44 0.12
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The ðtþ1Þ parameters in Eq. (34) are ‘‘decoupled’’; that is,
they appear in different terms within the summation
expression and they can be computed independently, hence
reducing the dimensionality of the optimization problem.
The reduction of the dimensionality of the optimization
problem is not, however, the only advantage of the EM
algorithm. A closed-form solution of the optimal mixture
proportions at each M step, pðtþ1Þ, may be obtained in
general [60]. This means that, instead of an optimization
problem with Kðmþ 1Þ � 1 unknowns, we only have to solve
K numerical optimization sub-problems, each one of
dimension m (m is the number of parameters in the
component distributions—e.g., m ¼ 2 in the case of Gaussian
components). Furthermore, closed-form solutions for the m

parameters of each mixture component can be obtained
when certain types of probability distributions are used. This
completely eliminates the need to perform numerical
optimization in the M step, greatly increasing the computa-
tional efficiency of the optimization process. (For the
solution of the Gaussian mixture component case, see [60].)
9. Example application

9.1. Introduction

To illustrate and validate the proposed methodology, we
use discontinuity traces generated using the model in
Section 2. The sampling domain is rectangular, with
dimensions Wo ¼ 150m and Ho ¼ 50m, and the genera-
tion domain has dimensions ten times larger than the
sampling domain, so that biases and edge effects are
negligible during trace generation.
We present two sets of examples: one for models with a

single target distribution (it is therefore a simplified version
of the model in Fig. 3 in which K ¼ 1), and another set of
Fig. 8. Evolution of the auxiliary function for successive iterations of the

EM algorithm in the exponential distribution case, and its relation to the

log likelihood ðP22 ¼ 1:0m�1Þ. (a) mg ¼ 5:0m, (b) mg ¼ 10:0m.
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examples for models using mixture target distributions with
Gaussian components. In particular, we test the inference
capabilities and the convergence of the EM algorithm
for several distribution parameters and trace intensity
values [61].
9.2. Single distribution case

Given the simplicity of this model, the size bias
correction can be included in the derivations and the
parameters of the real trace length distribution can be
inferred directly—thus, they can be compared with the
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Fig. 9. Convergence performance in the exponential distribution case

ðP22 ¼ 1:0m�1Þ. (a) Inferred parameters, (b) log likelihood ðmg ¼ 30:0mÞ.
generation parameters; see [60]. Table 2 presents the
distribution parameters and the intensity values used for
generation of traces; twenty simulations were performed
for each possible combination of distribution parameters
and intensity values. (We use exponential and lognormal
target distributions because they are commonly used to
model discontinuity trace lengths [21].)
9.2.1. Exponential distribution results

Fig. 6 shows examples of computed ML parameter
estimates, m̂EM ; Table 3 presents the mean parameter
estimates obtained for each intensity value, together with
0 10 15 20 25

0

2

4

6

8

10 �g

�EM

(a)

0 10 15 20 25

0

2

4

6

8

10

(b)

� 
[m

]

^

�g

�EM
^

� [m]

� [m]

5

� 
[m

]

5

Fig. 10. Computed parameter estimates when a lognormal distribution is

used for generation and target. (a) P22 ¼ 0:5m�1, (b) P22 ¼ 5:0m�1.
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their variances and coefficients of variation. The variability
increases as traces are larger with respect to the sampling
domain size, whereas it decreases as the number of
observations increases. In Fig. 7, we compare the genera-
tion distribution and the distribution inferred using the EM
algorithm. These results show the good inference capabil-
ities of the method: i.e., the means of the inferred
parameters match the parameters of the original distribu-
tions; and the inferred distributions closely match the
original distributions.

Fig. 8 is a plot of the log likelihood function and the
auxiliary functions at several iterations (until convergence)
of the algorithm. As can be seen, the auxiliary function is a
lower bound to the log likelihood function, whose
maximum monotonically approaches that of the log
likelihood. Another observation is that—due to the
problem of censoring bias [27,28]—the log likelihood
becomes ‘‘flatter’’ as the relative length of discontinuities
increases with respect to the size of the sampling domain.
We observe, however, that the EM algorithm behaves well
in all cases, converging to the asymptotic solution of the
problem (marked using solid circles in Fig. 8).

In Fig. 9(a) we present the convergence performance of
the computed parameter estimates; Fig. 9(b) illustrates the
convergence with respect to log likelihood values. A dashed
line indicates the asymptotic maximum likelihood solution
in both cases. The algorithm is shown to converge quickly
and values very close to the asymptotic solution are
achieved after only a few iterations.
9.2.2. Lognormal distribution results

Fig. 10 shows the computed parameter estimates for
each simulation; the generation parameters (solid lines) and
the mean values of the computed parameter estimates
(dashed lines) are indicated as well. As before, the
variability of the computed estimates increases as the size
of traces increases (i.e., as censoring bias increases), and it
Table 4

Computed parameter estimates, and their variability, when a lognormal distri

mg [m] Eðm̂EMÞ [m] Varðm̂EMÞ ½m
2� dðm̂EMÞ s

(a) P22 ¼ 0:5m�1

5.00 5.01 0.01 0.04 2

10.00 9.99 0.05 0.07 4

20.00 19.72 0.42 0.15 8

(b) P22 ¼ 1:0m�1

5.00 4.99 0.00 0.02 2

10.00 9.98 0.01 0.04 4

20.00 20.01 0.17 0.09 8

(c) P22 ¼ 2:0m�1

5.00 4.99 0.00 0.02 2

10.00 9.99 0.01 0.04 4

20.00 19.93 0.11 0.07 8

(d) P22 ¼ 5:0m�1

5.00 5.00 0.00 0.01 2

10.00 10.01 0.00 0.02 4

20.00 19.95 0.07 0.06 8
decreases as the intensity value increases (i.e., as we observe
more traces). The variances and coefficients of variation of
the lognormal distribution parameters used as target are
summarized in Table 4. Fig. 11 shows comparisons
between the generation distribution (solid lines) and the
inferred distribution (dashed lines). Again, the inference
capabilities are good, and the inferred distribution closely
matches the original one.
Fig. 12 shows the evolution of the auxiliary function at

several iterations of the EM algorithm. The log likelihood
function is represented using a dotted surface with dashed
boundaries, whereas the auxiliary functions are represented
with solid surfaces. (The maximum values of the log
likelihood and of the auxiliary function are plotted as well,
using upward and downward-pointing triangles.) The
auxiliary function is a lower bound of the log likelihood
so that, at convergence, the maximum of the auxiliary
function is equal to the maximum of the log likelihood,
hence providing a local solution of the maximum like-
lihood estimation problem.
Next, we present the convergence performance of the

algorithm, both with respect to the computed parameter
estimates and with respect to the auxiliary function values.
In Fig. 13(a) we show an example of the evolution of the
parameter estimates at several iterations of the EM
algorithm. (The initial parameter set is marked using a
solid-line cross, and computed parameters are marked
using dashed-line crosses.) Finally, Fig. 13(b) illustrates the
convergence in log likelihood. As before, the convergence is
shown to be fast in both cases, and a value very similar to
the asymptotic solution is usually achieved in less than ten
iterations.
9.3. Mixture distribution case

We explore the performance of the methodology when
the mixture model in Fig. 3 is used for inference of the
bution is used for generation and target

g [m] EðŝEMÞ [m] Varðm̂EMÞ ½m
2� dðm̂EMÞ

.00 2.02 0.01 0.06

.00 4.02 0.03 0.09

.00 7.85 0.36 0.21

.00 1.99 0.00 0.03

.00 4.01 0.01 0.04

.00 7.99 0.24 0.17

.00 2.00 0.00 0.02

.00 3.99 0.01 0.05

.00 7.96 0.12 0.12

.00 2.00 0.00 0.02

.00 3.99 0.01 0.04

.00 7.91 0.05 0.08
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distribution of discontinuity trace lengths. The distribution
that we use for generation of traces is composed of a
mixture of four lognormally distributed components,
whose parameters are listed in Table 5(a). Such generation
distribution provides a challenging test for the methodol-
ogy because it is multi-modal, and because it has a
significant probability of producing traces longer than
about half the size of the sampling window—hence
increasing the influence of biases (see Section 9.2). Table
5(b) presents intensity values used for generation of
discontinuities and the corresponding mean (after 100
simulations) of the number of observed traces, No.
We use target mixtures with K ¼ 3, 5, 8, and 12

Gaussian components for trace length distribution infer-
ence. This allow us to avoid making strong a-priori
assumptions about the most adequate type of distribution;
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Table 5

Mixture distribution used for generation of trace lengths, intensity values,

and expected number of observed traces

(a) Types of distributions and parameter values used as mixture components

of the generation distribution

Component Type Parameters

i pi mi [m] si [m]

1 Lognormal 0.25 9.0 4.0

2 Lognormal 0.15 20.0 4.0

3 Lognormal 0.30 31.0 3.0

4 Lognormal 0.30 40.0 4.0

(b) Mean number of traces observed for each intensity value considered

(after 100 simulations)

P22 ½m=m2� EðNoÞ

0.5 217

1.0 435

2.0 865

5.0 2160

Table 6

Influence of number of target distribution components and number of

observed traces on computed KL divergence values

P22

½m�1�

KL divergence

Mean Std.

dev.

Min Max

K ¼ 3 0:5 7:71� 10�02 3:56� 10�02 3:92� 10�02 1:83� 10�01

1:0 5:81� 10�02 1:87� 10�02 3:72� 10�02 1:08� 10�01

2:0 4:12� 10�02 1:05� 10�02 2:40� 10�02 6:49� 10�02

5:0 3:37� 10�02 5:11� 10�03 2:63� 10�02 4:42� 10�02

K ¼ 5 0:5 1:33� 10�01 6:96� 10�02 2:88� 10�02 2:96� 10�01

1:0 5:84� 10�02 1:88� 10�02 2:62� 10�02 9:11� 10�02

2:0 3:05� 10�02 1:33� 10�02 5:35� 10�03 5:68� 10�02

5:0 1:58� 10�02 6:01� 10�03 6:09� 10�03 2:97� 10�02

K ¼ 8 0:5 2:37� 10�01 1:47� 10�01 8:48� 10�02 5:35� 10�01

1:0 8:66� 10�02 4:01� 10�02 3:11� 10�02 1:74� 10�01

2:0 4:60� 10�02 1:71� 10�02 2:25� 10�02 7:67� 10�02

5:0 2:66� 10�02 8:45� 10�03 1:58� 10�02 4:88� 10�02

K ¼ 12 0:5 3:60� 10�01 2:44� 10�01 1:10� 10�01 9:49� 10�01

1:0 8:86� 10�02 3:44� 10�02 2:75� 10�02 1:69� 10�01

2:0 5:24� 10�02 2:01� 10�02 2:38� 10�02 1:08� 10�01

5:0 2:40� 10�02 6:04� 10�03 1:52� 10�02 3:57� 10�02
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computational efficiency is another advantage, since
closed-form expressions can be obtained for the maximiza-
tion performed in the M step, thus avoiding the need for
numerical optimization and reducing the computational
cost. To check the similarity between the original distribu-
tion, f gðl Þ, and the inferred distribution, f ðl Þ, we use the
Kullback–Leibler (KL) divergence [62]:

Dðf gð�Þjjf ð�ÞÞ ¼

Z
l

f gðl Þ log
f gðl Þ

f ðl Þ
dl. (35)

Table 6 presents the influence of the number of target
components and the number of observed traces on the
computed values of KL divergence. (Twenty simulations
were performed for each combination of K and P22 values.)
The predictive capabilities of the method are observed to
improve (i.e., the KL divergence decreases) as the intensity
value increases (i.e., as we have more observed traces). We
also observe that increasing the number of target mixture
components does not necessarily lead to improved in-
ference capabilities; this is due to over-fitting, an effect that
occurs when one or more of the target mixture components
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are assigned a small variance [55,63]. The occurrence of
over-fitting problems may be identified when spikes
(corresponding to mixture components with low variance)
are observed in the inferred PDF; in this research we found
that over-fitting problems are likely to appear when the
ratio between the number of observed discontinuities and
the number of mixture components is smaller than
approximately 150 (i.e., No=Ko150).

Several methods have been proposed to reduce the
occurrence of over-fitting. The introduction of penalty
terms in the log likelihood is sometimes employed [64],
whereas other authors have proposed to solve a con-
strained maximization problem in the M step [65–67]. With
this approach, restrictions are imposed, for instance, on the
ratio between the maximum and the minimum standard
deviations of the mixture components; minimum values for
the mixture proportions may be specified as well. This
method has been shown to be well posed, with a consistent,
global solution [66,67]; for an illustration of the improve-
ments obtained, see [60].

Fig. 14 compares the original distribution with inferred
distributions (after bias correction) for examples cases with
different number of target components. In all cases, we
generate traces using an intensity value of P22 ¼ 5:0m�1,
observing a number of traces in the order of No � 2160
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Fig. 14. Examples of inferred distributions (after bias correction) for

K ¼ 3 ðNo=K � 720Þ, (b) K ¼ 5 ðNo=K � 432Þ, (c) K ¼ 8 ðNo=K � 270Þ, (d)
(see Table 5(b)). The inference capability of the methodol-
ogy is generally quite good. However, only a maximum of
three modes may be reproduced with a mixture with three
components and, accordingly, we also see that the results
improve when more than three mixture components are
employed. In that sense, the results are particularly good
when five to eight mixture components are used (see Fig. 14
and Table 6). Based on these observations, we suggest
using target distributions with about two mixture compo-
nents for each mode of the real trace length distribution, as
long as there are at least 250 observed traces for each
component in the target distribution.
Fig. 15 shows an example of the evolution of the log

likelihood function values computed at each iteration of
the EM algorithm. The results show that the convergence
in log likelihood is fast, and values very similar to the
asymptotic value are usually obtained after fifteen or
twenty iterations.

10. Conclusions

We present a method for the estimation of the
distribution of discontinuity trace lengths based on
observations at rock outcrops. The methodology is based
in the use of a statistical graphical model approach in
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which we consider a wide, flexible class of target
probability distributions that allow us to obtain reasonable
estimates without making strong assumptions about its
type. Statistical graphical models further allow us to take
advantage of the relations of conditional independence
between the variables in the model. In particular, we use
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the expectation–maximization (EM) algorithm to solve the
maximum likelihood parameter estimation problem, as it
provides a natural way of exploiting the conditional
independence relations in models with unobserved variables.

The EM algorithm is an iterative optimization algo-
rithm, in which a lower bound to the log likelihood to be
maximized is used as an auxiliary function in the
optimization process. The E step needs to be solved only
once in each particular problem, and the computed
averaging function assures that the EM solution is a local
maximum of the log likelihood. Similarly, the maximiza-
tion at the M step may be performed by maximizing the
expected log likelihood at each iteration; the algorithm
‘‘decouples’’ the parameters of interest—hence reducing
the dimensionality of the optimization problem—and
closed-form analytical expressions can be developed when
target mixtures with Gaussian components are employed—
thus avoiding the need for numerical optimization and
reducing the computational cost.

Artificial trace data generated using Monte Carlo
methods are used to illustrate and validate the proposed
methodology. As expected, the performance improves as
the length of traces decreases, and it also improves as the
number of observed traces increases. Results show that
adequate estimates of trace length distribution parameters
are obtained when single distributions are used as target;
the inferred distributions have also been shown to compare
well with the original distributions. Similarly, the overall
inference capabilities are good in the Gaussian mixture
case, and they improve as we increase the number of target
components, as long as over fitting effects are avoided.
Finally, the convergence of the algorithm is shown to be
fast, particularly with respect to the log likelihood values at
each iteration, and the results show that computed log
likelihoods very similar to the asymptotic value are usually
obtained after fifteen or twenty iterations.
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