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Abstract

A systematic quantitative methodology for the reliability analysis of stability of rock slopes is presented. A sliding mass resting on an

inclined plane and composed of two blocks separated by a vertical tension crack is considered, and a disjoint cut-set system formulation

is proposed, with each cut-set corresponding to a different failure mode of the slope. Methods for the evaluation of the system reliability

problem are discussed and applied to solve an example problem. Monte Carlo simulation method may be used to obtain the ‘‘exact’’

solution, at the expense of a higher computational cost, while methods based on first order approximations are found to be

computationally efficient and to provide information of interest for the design process, but they are also shown not to be particularly

accurate in some cases. The results also show that reliability bounds based on linear programming provide a flexible way of estimating

the range of possible failure probabilities, and that accurate estimations of the probability of failure are obtained when sufficient

information is considered.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, decision making, risk assessment and
risk management procedures have become topics of
increasing interest to researchers and practitioners working
on rock engineering projects [1–3]. Hazard assessment and
the quantification of the probability of occurrence of
undesired events—i.e., failure probability—is a significant
aspect of the problem of decision-making under uncer-
tainty (see Fig. 1), and various methods have been applied
to deal with uncertainty in rock slope stability problems. In
general, these methods can be classified as methods that
account for the uncertainty in the geometrical properties of
the joint network (therefore having influence in the
formation of removable blocks), and methods that
consider uncertainties in the slope performance, with some
attempts to achieve an integration between both [4].
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Uncertainty in the geometrical characterization of
fractures within the rock mass lead to the development of
stochastic fracture network models. Dershowitz and
Einstein [5] present a complete review of some of the more
important stochastic models developed up to that time.
New models have been developed since, with, for example,
the inclusion of geological and mechanistic-based genetic
considerations [6] and the development of fractal-based or
geostatistical approaches [7–9]. Stochastic fracture network
models have been used extensively to make predictions of
formation of unstable blocks in rock slopes and under-
ground excavations [10–15], and additional statistically
based methods have been developed in order to estimate
the parameters of fracture networks [16–21].
The other source of uncertainty which is usually dealt

with in rock slope stability analyses is related to the
probability of failure of the slope, given uncertain input
parameters in the stability model. In rock slopes, methods
of limit equilibrium analysis are usually employed, and
they have been widely discussed in the literature [22–25].

www.elsevier.com/locate/ijrmms
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Fig. 1. The process of decision under uncertainty.

Fig. 2. Geometrical definitions of the considered slope stability model:

(a) Tension crack at slope top; (b) tension crack at slope face.
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However, in order to estimate the influence that uncertain-
ties have on the probability of failure, additional tools are
needed beyond traditional analyses. Reliability-based
approaches offer a very attractive framework for this task.
Simulation methods, point-estimate methods and the first
order-second moment (FOSM) method have been applied
to slope stability problems [26–29], together with the first-
order reliability method (FORM). For instance, Low
presents a convenient implementation of FORM, based
on the use of minimization tools readily available in
spreadsheet software [30,31].

In this paper, we address the problem of system
reliability analysis of rock slope stability. Our interest in
methods to evaluate the reliability of general rock slope
systems is motivated by the ‘‘rock engineering system’’
paradigm [32], which proposes that the complex perfor-
mance of rock engineering designs is governed by the
joint interaction of a number of different factors. System
reliability techniques have been applied to the problem
of slope stability before—usually in the context of
a series system approach to the problem of slope failure
along slip surfaces in soils [33,34]. More advanced tools
are still needed, however, in order to perform relia-
bility-based designs of rock slope systems. To that
end, we present a general quantitative approach for
solving the problem of system reliability analysis in rock
engineering that provides a framework to support risk-
based engineering decisions in a systematic and quantita-
tive way.

2. Model formulation

For the purposes of illustration, we consider a simple
sliding mass composed of two blocks separated by a
vertical tension crack (see Fig. 2), resting on an inclined
plane. The position of the tension crack and the water level
in the crack are random. To simulate the effect of a
buttress or rock reinforcement, a passive force T of
uncertain magnitude is applied at the toe of the slope.
For simplicity, the passive force is assumed to be normal to
the plane of failure, as shown in Fig. 3.

In general, two sets of constraints must be fulfilled for a
rock block to be potentially unstable:
�
 The first set of constraints—removability constraints
[24]—refers to the kinematical admissibility of block
displacements, which is influenced by the geometrical
relations between the discontinuities forming the block
and the excavation itself. Following the classical
assumption of block theory [35], the orientation of the
discontinuities forming the blocks is considered to be
deterministic in this example. Hence, this condition is
always fulfilled for the example considered herein.

�
 The second set of constraints refers to stability condi-
tions of removable blocks under existing loads. Typi-
cally, the stability of removable blocks is assessed using
limit equilibrium methods. Unstable removable blocks
are referred to as keyblocks [24].

In addition, we need to establish a clear distinction
between success and failure events in order to perform a
reliability analysis of the slope [36]. We will assume that the
slope is safe when the factor of safety of block A is greater
than unity (FSA41), using the model presented by Hoek
and Bray [22], with some modifications to consider the
interaction between blocks.
Two different cases may be distinguished in the analysis,

depending on the interaction between blocks A and B, as
follows:

Case 1: Block B is stable by itself; i.e., there is no
interaction between blocks.

Case 2: Block B is unstable; i.e., block B will tend to
slide, imposing an interaction force, IF, on block A.
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Fig. 3. Forces considered in the slope stability model.
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2.1. Case 1: No interaction between blocks

In this case, we compute the factor of safety against
sliding for block B, as [22]:

FSB ¼
cBAB þ ðWB coscp �UB þ V sincpÞ tanfB

WB sincp � V coscp

, (1)

where cB is the cohesion along the failure surface and block
B, fB is the friction angle, AB is the area of contact with
the failure surface, and UB and V represent water pres-
sure resultant forces. AB, UB and V are obtained as follows
[22]:

AB ¼ z csccp, (2)

UB ¼
1
2
gwz2w csccp, (3)

V ¼ 1
2
gwz2w. (4)

WB is the weight of block B. Depending on the location
of the tension crack, we have:
�
 For the tension crack located at the top of the slope (see
Fig. 2a):

WB ¼
1
2
grockz2 cotcp, (5)
�
 For the tension crack located at the slope face (see
Fig. 2b):

WB ¼
1
2
grockH2½cotcpð1� ð1� z=HÞ2

�ðcotcp tancf � 1ÞÞ � cotcf �. ð6Þ

The transition between both cases will occur when the
tension crack is located at the crest of the slope, that is
when [22]:

z=H ¼ ð1� cotcf tancpÞ. (7)
Similarly, assuming that block B is stable, the factor of
safety of block A is computed as [22]:

FSA ¼
cAAA þ ðT þWA coscp �UA � V sincpÞ tanfA

WA sincp þ V coscp

,

(8)

where cA, fA, UA, and V have equivalent meanings as in
Eq. (1), and T is the passive force applied at the toe of the
slope. AA and UA are obtained by [22]:

AA ¼ ðH � zÞ csccp, (9)

UA ¼
1
2
gwzwðH � zÞ csccp, (10)

and V is obtained by Eq. (4).
Again, the expression for the weight of block A will be

different depending on the location of the tension crack
[22]:
�
 For the tension crack located at the top of the slope:

WA ¼
1
2
grockH2½ð1� ðz=HÞ2Þ cotcp � cotcf �, (11)
�
 For the tension crack located at the slope face:

WA ¼
1
2
grockH2½ð1� z=HÞ2 cotcpðcotcp tancf � 1Þ�.

(12)
2.2. Case 2: Interaction between blocks

This case occurs when block B is unstable by itself (i.e.,
FSBo1 in Eq. (1)), and tends to slide. One possible
outcome is that block A is stable under the extra load due
to block B (hence making block B stable), in which case
the slope is considered to be stable. The other outcome is
that block A is unstable, in which case failure occurs. The
expressions of the factors of safety corresponding to blocks
A and B will be similar to those presented in Eqs. (1) and
(8), with the only modification that terms representing the
interaction force, IF, between both blocks need to be
considered. Friction along the tension crack (of value fAB)
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Fig. 4. Disjoint cut-sets system formulation of plane rock slide stability

problem.
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is considered, and it is assumed that IF has a direction
inclined at an angle fAB with respect to the surface of the
tension crack (see Fig. 3).

Maintaining the notation used in Section 2.1, the factors
of safety of blocks A and B may be computed as:

FSB ¼
cBAB þ ½WB coscp �UB þ V sincp þ IF sinðcp � fABÞ� tanfB

WB sincp � V coscp � IF cosðcp � fABÞ
,

(13)

FSA ¼
cAAA þ ½T þWA coscp �UA � V sincp � IF sinðcp � fABÞ� tanfA

WA sincp þ V coscp þ IF cosðcp � fABÞ
,

(14)

where A, U , V , and W are given in Eqs. (2) to (12). Then,
we can compute the value of IF that makes FSB ¼ 1 in Eq.
(13), and we can substitute it back into Eq. (14); the slope is
considered to be stable if FSA41, being unstable other-
wise. The computed value of FSA is not the ‘‘exact’’ value
of the factor of safety for cases in which FSAa1. However,
this approach provides us with the same failure domain as
the ‘‘exact’’ solution, and hence provides the same
reliability results.

3. Reliability analysis: General system formulation

We consider a system as an assembly of components,
such that the state of the system is uniquely defined in terms
of the states of its components. Without loss of generality,
we additionally assume that for a system with Ng distinct
components, each component i, has two possible states—
e.g., failure (Ei) or safe (Ēi) state.

Several types of systems may be defined [38,39]. To make
our approach systematic and comprehensive, we work with
a disjoint cut-set formulation, in which the general system is
represented by a series of NCS parallel sub-systems, or cut-
sets, Ck; such cut-sets are defined to be disjoint, that is
Ck \ Cl ¼ ;, for kal and k; l ¼ 1; . . . ;NCS. This allows a
considerable simplification of the computations, since the
probability of failure of the system may be obtained as the
sum of the individual probabilities of failure of each cut-set
Table 1

Physical interpretation of limit state functions defining component performan

Limit state function Physical interpr

g1 � z�Hð1� cotcf tancpÞp0 Tension crack a

g2 � fFSBjðg1p0Þg � 1p0 Block B is unst

given tension cr

g3 � fFSBjðg140Þg � 1p0 Block B is unst

given tension cr

g4 � fFSAjðg1p0; g240Þg � 1p0 Block A is unst

slope and block

g5 � fFSAjðg1p0; g2p0Þg � 1p0 Block A is unst

slope and block

g6 � fFSAjðg140; g340Þg � 1p0 Block A is unst

slope and block

g7 � fFSAjðg140; g3p0Þg � 1p0 Block A is unst

slope and block
(parallel sub-system), as follows:

PðEgeneralÞ ¼ P
[NCS

k¼1

\
i2Ck

Ei

 !
¼
XNCS

k¼1

P
\

i2Ck

Ei

 !
. (15)

The performance of each component is defined by a
limit-state function (LSF), so that component i is assumed
to fail when its LSF is giðxÞp0, and it is assumed to be in a
safe state when giðxÞ40. Fig. 4 shows the disjoint cut-set
formulation for the slope stability model presented in
Fig. 2. That is, the reliability problem is simplified to the
evaluation of the probabilities of failure of NCS ¼ 4
disjoint cut-sets, with a total of Ng ¼ 7 components.
(Table 1 lists the physical interpretation of each LSF in
the system.) Furthermore, each parallel sub-system in
Fig. 4 may be associated with a mode of failure of the
slope, as follows:

Failure mode 1: The tension crack is located at the top of
the slope. No interaction between blocks occurs.

Failure mode 2: The tension crack is located at the top of
the slope. Interaction between blocks does occur.

Failure mode 3: The tension crack is located at the face of
the slope. No interaction between blocks occurs.

Failure mode 4: The tension crack is located at the face of
the slope. Interaction between blocks does occur.
ce in the system modeling the stability of the rock slope

etation Eqs.

t top of slope (7)

able (without interaction from A), (1), (5)

ack located at top of slope

able (without interaction from A), (1), (6)

ack located at face of slope

able, given tension crack at top of (8), (11)

B stable (no interaction occurs)

able, given tension crack at top of (14),(11)

B not stable (interaction occurs)

able, given tension crack at face of (8), (12)

B stable (no interaction occurs)

able, given tension crack at face of (14), (12)

B not stable (interaction occurs)
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3.1. Component reliability

In order to compute the reliability of each parallel sub-
system in the disjoint cut-set model, we start with the
computation of the reliability of individual components.
The probability of failure of a component is computed as:

Pf ¼ PðgðxÞp0Þ ¼

Z
gðxÞp0

f ðxÞdx, (16)

where f ðxÞ is the joint probability density function (PDF)
of the input variables x in the corresponding limit state
function, gðxÞ. The generalized reliability index [40], is
commonly used as an alternative measure of safety. It is
defined as:

bg ¼ F�1ð1� Pf Þ, (17)

where Fð�Þ represents the cumulative density function (CDF)
of the standard normal distribution.

The direct computation of integrals of the form of Eq.
(16) is a complex and computationally intensive problem
when standard methods of integration are used and a
number of more efficient methods have been developed for
such task. Among them, analytical methods, such as the
first order reliability method (FORM), have found great
acceptance. In general, FORM involves the following steps
(see Fig. 5) [41]:
1.
 Transformation of the vector x of variables in the
original space, into a vector of standard and uncorre-
lated normal variables u (the so-called standard normal
space). This transformation produces a transformed
limit state function, from the original gðxÞp0 to the
transformed GðuÞp0. Details of the different transfor-
mations available—that can consider a general case,
with non-gaussian and correlated random variables—
are presented elsewhere [42,43].
2.
 Determination of the design point (i.e., the most likely
failure point) in the standard normal space, u�. In order
to obtain the design point, we must solve the following
constraint minimization problem [44,45]:

u� ¼ minfkuk j GðuÞ ¼ 0g. (18)

We use the improved Hasofer Lind–Rackwitz Fiessler

(iHL–RF) algorithm [46], since it assures the conver-
gence to a solution of (18).
3.
 The limit state surface in the standard normal space is
approximated with the corresponding first order ap-
proximation at the design point:

GðuÞ � rGT
ju� � ðu� u�Þ, (19)

where rGT
ju� � ½

qG
qu1
; . . . ; qG

qun
� is the gradient vector of GðuÞ

at point u�.

4.
 The probability of failure is approximated by the

probability content of the half-space b� aTup0, where

a ¼ �
rGju�

krGju� k
is the outward unit vector normal to the

limit state surface in u� [47], and where b represents the
minimum distance to the LSF. This leads to:

Pf � P1 ¼ Fð�bÞ, (20)

where Fð�Þ is the CDF of the standard normal distribu-
tion.

Vector a represents the sensitivities of the computed
reliability to changes in the random variables u. If the
random variables x are not independent, however, vector a

is not informative in relation to the random variables x. In
that case, the sensitivity vector for the original variables x
may be defined as [37]:

cT ¼
aTJu�;x�D

0

kaTJu�;x�D
0k
, (21)

where Ju�;x� is the Jacobian of the transformation, and D0 is
the standard deviation matrix of equivalent normal
variables x0, defined as x0 ¼ x� þ Jx�;u� ðu� u�Þ.
Vector c also provides information that allows to

differentiate between ‘‘load’’ and ‘‘resistance’’ variables
[37]; if the ith component of vector c is positive, that
indicates the ith random variable is a ‘‘load’’ variable (i.e.,
a shift in the distribution toward higher values is associated
to an increase in the probability of failure, and vice-versa).
Similarly, a negative value of the ith component of c

indicates that the ith random variable is a ‘‘resistance’’
variable.

3.2. System reliability

A number of approximate and ‘‘exact’’ methods have
been developed to solve the system reliability problem.
Methods of interest in the context of rock engineering
systems are discussed next.
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3.2.1. First order approximation of the probability of failure

of parallel systems

The probability of failure of parallel system (i.e., cut-set)
Ck may be estimated using the following polyhedral first
order approximation of the failure domain (see Fig. 6) [39]:

Pf ðCkÞ � P
\

i2Ck

vip� bi

 !
¼ Fð�bCk

;RÞ, (22)

where the vi � aTi u random variables have standard normal
marginal distributions, and FðbCk

;RÞ is the CDF of the
standard multinormal distribution evaluated at �bCk

, with
correlation matrix, R, given by R½i; j� ¼ aTi aj. (bCk

is a
vector with the reliability indexes of each LSF in Ck, and ai

and aj are the sensitivity vectors of the ith and jth LSF
in Ck.)

3.2.2. System bounds to the probability of failure

An alternative approach is the use of reliability bounds.
Several types of bounds have been proposed [39,48–50],
using information about probabilities of single components
or higher order joint probabilities. These bounds were,
however, either limited to series systems, or were too wide
to be of practical interest. Song and Der Kiureghian [38]
have recently proposed new bounds for the reliability of
general systems based on linear programming (LP). The
strength of the LP bounds is that they have been shown to
provide the narrowest possible bounds for any given
information on component probabilities [38].
For a general system composed of Ng components the
LP bounds may be obtained dividing the sample space of
component events into 2Ng mutually exclusive and collec-
tively exhaustive (MECE) events ei, with i ¼ 1; . . . ; 2Ng .
Then, the probability of any general system may be
expressed in terms of boolean operations of the probabil-
ities of such MECE events. Calling p ¼ ðp1; . . . ; p2Ng Þ,
where pi represents the probability of event ei, the linear
programming problem can be stated as [38]:

Optimize: (Minimize, maximize) the following objective
function,

PðEsystemÞ ¼ cTp, (23)

where c represents the boolean vector of coefficients that
define the probability of the system in terms of the
probabilities of the MECE events.

Subject to constraints:
�
 Basic axioms of probability:

X2Ng

i¼1

pi ¼ 1, (24)

piX0 8i; i ¼ 1; . . . ; 2Ng . (25)
�
 Complete or incomplete probability information of
component and joint probabilities. For instance, for
complete information of uni- and bi-component prob-
abilities, we would have:

PðEiÞ � Pi ¼
X

r:er	Ei

pr, (26)

PðEjEkÞ � Pj;k ¼
X

r:er	EjEk

pr, (27)

where i represents those indices of individual compo-
nents for which we have reliability information, and
ðj; kÞ represent those indices of component pairs for
which we have bi-order joint reliability information.

3.2.3. Simulation methods

Simulation methods, such as Monte Carlo and direc-
tional simulation methods, are popular for reliability
analysis of engineering systems. In the Monte Carlo
simulation method, we define a boolean function IðxÞ that
represents the failure (IðxÞ ¼ 1) or safe (IðxÞ ¼ 0) state of
the system for a set of values of the model’s input random
variables x. That is, IðxÞ is defined as:

IðxÞ ¼
1 if

SNCS

k¼1

T
i2Ck

giðxÞp0;

0 otherwise:

8><
>: (28)

Using a pseudo-random number generation algorithm
[39], a sequence of Ns input vectors xi is obtained,
(i ¼ 1; . . . ;Ns), according to their joint statistical distribu-
tion. Then, the probability of failure of the system may be
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estimated by:

Pf �
1

Ns

XNs

i¼1

IðxiÞ. (29)

In the case of the directional simulation method, we
express vectors in the standard normal space as u ¼ Rf,
where f ¼ u=kuk. Then, the probability of failure is given as
the following conditional probability integral:

Pf ¼

Z
P

[NCS

k¼1

\
i2Ck

GiðRfÞp0

 !�����f ¼ a

" #
f ðaÞ

hðaÞ
hðaÞda, (30)

where f ðaÞ represents the uniform distribution over the unit
hyper-sphere, and hðaÞ is a sampling density designed to
improve the efficiency of the simulation, making those
directions that more strongly affect the probability of
failure to be sampled preferably [51].

The computation of the roots of the limit state functions
in each direction a is needed to compute the probability of
failure in Eq. (30). However, the problem of root finding is
costly. For that reason, an approximate surface may be
used to obtain solutions of the roots of GiðriaÞ � 0,
simplifying the computations required. In this paper, a
first order approximation of the limit state functions was
used. Accordingly, very similar solutions to those provided
by the first order approximation given by Eq. (22) are
obtained, as will be shown later.

3.3. Numerical implementation

In this work, we use CALREL [52] to perform simula-
tion analyses and to perform the FORM analyses for
component reliability that are needed to compute the first
order approximation of the system reliability presented in
Section 3.2.1. We implemented an efficient algorithm based
on simulation with sequential conditional importance
sampling (SCIS) [53] to compute Fð�; �Þ in Eq. (22), given
the information from the FORM analysis. Similarly, we
implemented the LP bounds of the system reliability
presented in Section 3.2.2 using commonly available
programs for numerical analysis. Our implementation of
the SCIS algorithm (using the GNU Scientific Library [54])
and of the LP method to compute the system reliability
bounds (using MATLAB and R [55]) can be obtained from
the authors upon request.

4. Example analyses

For the purpose of illustration of the type of results that
can be obtained using the methodology, we use an example
case based on the simple—yet commonly used—plane
failure model presented in Section 2. However, the
approach that we present in this paper is not limited to
such simple problems. The system reliability framework
analyses can be used to solve more complex problems by
appropriate changes in the definition of the system and of
the limit state functions. That is, the reliability approach
can be employed as long as we can model the (determinis-
tic) behavior of the components of the system in an
adequate way first. CALREL is a generalized computer
code that allows the use of limit state functions in the form
of a set of user-defined subroutines or in the form of
external codes [52], such as, for instance, finite element
codes. Once that component reliabilities are computed and
the system is defined, the first order approximation to the
reliability of the system can be estimated independently of
the complexity of the limit state functions involved.
Similarly, LP bounds to problems with up to 17 compo-
nents can be ordinarily solved on a PC [38]. Computers
with larger memory or parallel computing may be
necessary for larger problems [38].

4.1. Example case geometry and material properties

We assume that the overall slope geometry is determi-
nistic with the location of the tension crack being the only
random variable. Different slope heights, H, are consid-
ered, with H ranging from 10 to 40m. The potential failure
plane is inclined at 32
 ðcp ¼ 32
Þ, and the angle of the
slope cut is 60
 (cf ¼ 60
). (An alternative model in which
the potential failure surface is uncertain could be employed
as well.) The specific weights of rock and water
(grock ¼ 25 kN=m3 and gw ¼ 9:8 kN=m3, respectively) are
also considered deterministic.
Cohesion and friction angle along the failure surface are

assumed to be random, as well as the position of the
tension crack and the depth of water in the tension crack.
Beta distribution is used to model friction angles between
the different blocks, since it is very flexible and versatile; it
is also bounded, avoiding problems that may arise when
using unbounded distributions to model friction angles.
Friction angles along block A, block B, and their contact
surface are considered to have mean values of mfA

¼ 36
,
mfB
¼ 32
 and mfAB

¼ 30
, respectively. In all cases they
are considered to be bounded at values equal to the mean
plus or minus 10
. Cohesion values are chosen to be
lognormally distributed, since the lognormal distribution is
commonly used to model cohesion [29]. A mean value of
mcA
¼ 20 kPa is assigned for the cohesion along plane A,

and mcB
¼ 18 kPa is used for block B. In both cases the

standard deviation of their distribution is assumed to be
scA ¼ scB ¼ 4 kPa. Finally, the passive force T acting at the
toe of the slope is modeled using the normal distribution,
with mT ¼ 50 kN and sT ¼ 3 kN.
The location of the tension crack and the percentage of

the tension crack filled with water are modeled using
dimensionless parameters xXB

and xzw, respectively. The
location of the tension crack follows a non-symmetric beta
distribution, in order to represent the common observation
that tension cracks are more commonly presented at the
top of the slope [22]. It is also assumed that the drainage
system of the slope prevents water levels from exceeding
50% of the crack height. Since no previous information on
the distribution of xzw is known, the uniform distribution is
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used to model the distribution of water level within the
tension crack. Table 2 lists the statistical distributions used
for each one of the random variables considered. Fig. 7
shows a graphical representation of their PDFs.

Further, the random variables are assumed to be corre-
lated, with the correlation structure shown in Table 3. The
location of the tension crack, the water level within the
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Fig. 7. Probability density functions of the random variables in the block stabi

(c) friction angles; (d) cohesion values.

Table 2

Statistical distributions of input parameters in the slope stability model

Variable Type Parameters

p1 p2 p3 p4

xXB
Betaa 3.0 4.0 0.0 1.0

xzw Uniformb 0.0 0.50

fA ðdegÞ Betaa 5.0 5.0 26.0 46.0

fB ðdegÞ Betaa 5.0 5.0 22.0 42.0

fAB ðdegÞ Betaa 5.0 5.0 20.0 40.0

cA ðkPaÞ Lognormalc 20.0 4.0

cB ðkPaÞ Lognormalc 18.0 4.0

T ðkNÞ Normalc 50.0 3.0

ap1 ¼ q, p2 ¼ r, p3 ¼ a, p4 ¼ b.
bp1 ¼ a, p2 ¼ b.
cp1 ¼ m, p2 ¼ s.
tension crack and the passive force at the toe of the slope
(i.e., xXB

, xzw and T, respectively) are considered to be
independent of all the other variables, whereas shear
strength parameters (i.e., friction angles and cohesion
values) along the different joints are assumed to be
correlated. Values of friction angle are assumed to be
positively correlated, and a slight negative correlation is
assumed between cohesion and friction to model the
common observation in laboratory shear strength tests
that cohesion and friction are not independent, with the
cohesion dropping as the friction angle rises and vice-versa
[56].
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lity model: (a) Tension crack location; (b) passive force at bottom of slope;

Table 3

Correlation structure between random variables considered in the analysis

xXb
xzw fA fB fAB cA cB T

xXb
1.0

xzw 0.0 1.0 (Symmetric)

fA 0.0 0.0 1.0

fB 0.0 0.0 0.3 1.0

fAB 0.0 0.0 0.3 0.3 1.0

cA 0.0 0.0 �0.1 0.0 0.0 1.0

cB 0.0 0.0 0.0 �0.1 0.0 0.3 1.0

T 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
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4.2. Analysis results

CALREL was employed for FORM analyses of com-
ponents in the example slope system. FORM results were
then used to perform the polyhedral first order approxima-
tion of the failure domain presented in Section 3.2.1. The
LP bounds presented in Section 3.2.2 were computed as
well. CALREL was also used to perform first order
directional simulation analyses, and to compute the
‘‘exact’’ reliability solution by means of Monte Carlo
simulation. Fig. 8 shows the failure probabilities computed
using these methods.

The contribution that each failure mode has in the
overall probability of failure depends, among others, on
the specific geometry of the slope, the distribution of
locations of the tension crack, the distribution of water
level conditions, and on the distribution of other forces
acting on the blocks in each particular case. The ability to
compute such contribution is a valuable feature of this
methodology, since it provides quantitative information of
interest in the design process that is not available
otherwise. In this case, for instance, graphs in Fig. 8 show
that Failure mode 1 (i.e., block A failing without interac-
tion forces due to block B, with the tension crack being
located at the top of the slope), and Failure mode 3 (i.e.,
block A failing without interaction forces due to block B,
with the tension crack being located at face of the slope)
have the highest probability of failure, while failure modes
corresponding to cases in which there is interaction
between blocks (i.e., Failure modes 2 and 4) are signifi-
cantly less likely. Given this information, the stability of
block A should be the primary concern when designing the
slope, making the stability of block B of secondary
importance. This may change, however, as we change
some of the parameters over which the designer has
control. For instance, if we increase the value of T (i.e., the
passive force at the bottom of the slope), the stability of
block A improves (therefore improving the reliability of
the system), and failure modes with interaction between
both blocks become more significant with respect to failure
modes in which interaction does not occur.
Table 4 presents FORM results—computed for the case

of H ¼ 20m—for each limit state function controlling
Failure mode 1. Such results include the computed design
points, together with the sensitivity of the reliability
solution to changes on the individual random variables



ARTICLE IN PRESS
R. Jimenez-Rodriguez et al. / International Journal of Rock Mechanics & Mining Sciences 43 (2006) 847–859856
(the larger the absolute value of the ith component of c, the
higher the sensitivity with respect to the ith random
variable). Table 4 also shows the number of iterations of
the iHL–RF algorithm before convergence, as well as
computed values of the probability and reliability index for
each limit state function.

In this case, the highest sensitivity corresponds to the
location of the tension crack (represented by parameter
xXB

), suggesting that knowledge of the exact location of the
tension crack is a key factor in the stability analysis, and
hence emphasizing the importance of a good geological
survey of discontinuities in the rock mass. Similarly, the
sensitivity corresponding to the water level parameter xzw

(i.e., the percentage of the tension crack that is filled
with water; see Fig. 2) has a high positive value for limit
state function g4ðxÞ, which models the stability of block
A under Failure mode 1. Therefore, xzw corresponds to
a ‘‘load’’ variable with respect to g4ðxÞ (i.e., an increase
in the value of xzw increases the probability of failure
of the component and vice-versa). Similar results are
obtained for the limit state function modeling the
occurrence of no interaction forces between both blocks
(i.e., �g2ðxÞp0); accordingly, this shows that lowering the
Table 4

First order reliability results for components of Failure mode 1

(H ¼ 20m)

LSF g1ðxÞp0 g2ðxÞp0 g4ðxÞp0

niter 3 179 16

bFO �1:13 2:45 1:50

PFO
f 8:71� 10�01 7:11� 10�03 6:71� 10�02

r:v: x� c x� c x� c

xXB
0.64 �1.00 0.66 0.49 0.65 0.78

xzw 0.25 0.00 0.22 �0.06 0.40 0.55

fA 36.00 0.00 34.11 0.00 34.77 �0.27

fB 32.00 0.00 26.50 �0.77 31.61 0.00

fAB 30.00 0.00 28.11 0.00 29.61 0.00

cA 19.61 0.00 18.45 0.00 18.95 �0.14

cB 17.57 0.00 14.71 �0.40 17.32 0.00

T 50.00 0.00 50.00 0.00 49.97 �0.01

Table 5

Simulation results for Failure mode 1

H Monte Carlo

niter Pf b covðPf Þ

10 999000 2:10� 10�05 4.10 0.218

15 131000 3:08� 10�03 2.74 0.050

20 28000 1:45� 10�02 2.18 0.049

25 14000 2:96� 10�02 1.89 0.048

30 8000 4:98� 10�02 1.65 0.049

35 6000 6:30� 10�02 1.53 0.050

40 6000 7:27� 10�02 1.46 0.046
water level within the tension crack will reduce the
probability of occurrence of Failure mode 1. However,
this measure will also affect the probabilities of occurrence
of other failure modes, and failure modes that were not as
likely prior to the lowering of the water level might become
more significant.
The discussion above illustrates the system nature of the

problem; that is, mitigation of one potential mode of
failure (by means of, for instance, increasing the support
force T, or assuring an adequate drainage of the slope)
changes the relative importance of the other failure modes.
In this sense, it is the designer’s duty to decide which slope
design is preferable, based on probabilities, costs, con-
sequences and the associated risks of the different modes of
failure.
The sensitivities of the reliability results with respect to

shear strength parameters depend on the selected limit state
function. Table 4 shows that, for instance, the stability of
block A in Failure mode 1 is quite sensitive to the values of
cohesion and friction angle along its failure surface. As
expected, both cA and fA are found to be ‘‘resistance’’
variables, with the vector c showing that fA is approxi-
mately twice more relevant than cA in the safety of the
slope. Similarly, the stability of block B (as given by limit
state function �g2ðxÞp0) is about twice more sensitive to
changes in the friction angle, fB, than to changes in
cohesion, cB. Finally, the influence of changes in the value
of the passive force at the toe of the slope, T, or in the angle
of friction between both blocks, fAB, is not very significant
in this case, suggesting that treating these two variables
deterministically might be appropriate.
The results corresponding to simulation analyses of the

probability of occurrence of Failure mode 1 for different
values of H are presented in Table 5. The number of
iterations needed by simulation methods is significantly
higher than the number of iterations needed by the
iHL–RF algorithm used in the FORM solution (see Table 4).
This shows that the method based on first order
approximation is computationally more efficient than
traditional Monte Carlo-based solutions, which may be
actually unachievable in some cases, specially when
complex limit state functions are used or when dealing
Directional simulation

niter Pf b covðPf Þ

61500 1:65� 10�04 3.59 0.050

9700 4:76� 10�03 2.59 0.050

3800 1:98� 10�02 2.06 0.050

2300 3:77� 10�02 1.78 0.050

1700 5:50� 10�02 1.60 0.049

1400 6:97� 10�02 1.48 0.049

1300 8:02� 10�02 1.40 0.048
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with problems of low probability of failure, as we usually
have in engineering practice.

Fig. 8 also shows that the method of estimation of
probabilities based on first order approximation of the
failure domain—even though more computationally effi-
cient—is not particularly accurate in some cases. (The
quality of the result will depend on the degree of non-
linearity of the transformed limit state functions; see
Fig. 6.) A fairly close agreement with the ‘‘exact’’ results
provided by the Monte Carlo simulation method is
obtained, however, when the contributions of each failure
mode to the probability of failure of the complete system
are added (see Fig. 9), since apparently over-predictions of
the reliabilities of some failure modes balance out under-
predictions of reliabilities of other failure modes.

The probability bounds for the complete slope system
are also presented in Fig. 9. These results were obtained
separately considering only uni-component failure prob-
ability information (i.e., PðgiðxÞp0Þ, with i ¼ 1; . . . ;Ng),
and both uni and joint bi-component failure probability
information (i.e., PðgiðxÞp0 \ gjðxÞp0Þ, with i ¼ 1; . . . ;
Ng � 1 and j ¼ i þ 1; . . . ;Ng). The results show that the
probability bounds computed using information regarding
probabilities of failure of individual components only are
too wide to be of any practical interest. On the other hand,
the probability bounds computed using both uni and joint
bi-component failure information are much narrower,
hence providing a greatly improved information on the
reliability of the rock slope.

5. Conclusions

We present a reliability-based methodology for the
analysis of rock slope stability problems based on a general
systems approach. A disjoint cut-set formulation is used to
compute the reliability of the system. Within that frame-
work, each cut-set is associated with a failure mode and the
probability of failure of the system is obtained as the sum
of the probabilities of each failure mode. The results of an
example analysis of a two-block sliding system show that,
in this case, failure modes in which interaction between
blocks does not occur (Failure modes 1 and 3) are
significantly more likely than failure modes in which
interaction occurs (Failure modes 2 and 4). The ability to
quantify the relative importance of each failure mode is a
valuable feature of the methodology that helps the designer
to establish priorities during design and decision making.
The computed results also show that the method based

on a first order approximation of the failure domain of
parallel systems provides a simple and computationally
efficient approach to perform reliability computations.
FORM analyses employed with this method provide
additional information of interest that is not easily
obtained otherwise. In particular, the most likely failure
conditions (i.e., design points) and the sensitivity of the
reliability solution to changes in the random variables of
the model can be computed, and ‘‘load’’ and ‘‘resistance’’
variables can be identified as well.
The use of simulation methods to solve the system

reliability problem shows that the reliability results
computed using the ‘‘exact’’ Monte Carlo method are
obtained at the expense of a significantly higher compu-
tational cost when compared to first order approxi-
mations based on FORM. Similarly, it is shown that the
method of first order directional simulation presents some
computational advantages with respect to Monte Carlo
method, providing results that are very similar to those
given by the first order approximation of the probability of
failure.
Finally, our results show that bounds of the probability

of failure based on LP techniques provide accurate
estimations of the system failure probability when in-
formation on both uni-component and joint bi-component
probabilities is considered. The LP approach provides an
interesting and flexible way of computing the range of
possible failure probabilities for any given level of
information. This method may also be used in conjunction
with methods based on first order reliability approxima-
tions, so that we can use the information provided by
FORM analyses—i.e., sensitivity measures, design points,
etc.—at the same time that we have an estimation of the
uncertainty associated to the first order results, given by the
LP bounds.
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