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Abstract

We demonstrate the use of a spectral clustering algorithm as a novel approach for the identification of rock discontinuity sets based on
discontinuity orientations. We use the spectral clustering approach with a simple measure of similarity between normal unit vectors in
spherical space that is specific to the clustering of rock discontinuity orientations. The performance of the algorithm is studied using
benchmark test cases with data sets corresponding to real rock masses. The results show that the algorithm provides good clustering
results, providing partitions that agree well with the results of several other clustering algorithms that are commonly used in rock
engineering. Furthermore, we show an example case with data sets of discontinuity orientation compiled from the literature, in which the
spectral clustering algorithm provides more natural partitions than the other algorithms considered. Additional advantages of the
algorithm are that convergence is fast, and that it can be easily (and efficiently) implemented using popular software packages for

numerical analysis.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The grouping of discontinuities into discontinuity sets
and the characterization of their orientation is an
important aspect of rock mass characterization for
engineering applications (see e.g., [1-8]). The representa-
tion of discontinuity orientation data and the identification
of discontinuity sets is commonly performed using
techniques for hemispherical projection of discontinuity
poles (i.e., unit vectors with direction normal to disconti-
nuity planes) [1,9-11]. Methods for visual clustering on
density contours computed by counting the number of
poles that fall inside a reference circle are commonly used,
but they present problems due to sampling bias that need
to be corrected [12-14]. Additional difficulties are due to
clustering results heavily depending on the size of the
counting circle [11], and to subjectivity in the interpretation
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of the clustering results [1,15,16]. In summary, counting
methods have not been found entirely satisfactory in some
cases [17,18], leading to the development of alternative
techniques for automatic identification of discontinuity
sets.

Methods for automatic clustering of discontinuities
based on their orientation can be divided into methods
that assume an initial probabilistic structure of the
discontinuity orientation data [15,19-21], and methods
that group discontinuities without considering an a priori
probabilistic model [11,16,18,22,23]. Methods for classifi-
cation of discontinuity sets based on the use of artificial
neural networks have also been proposed [24], as well as
clustering methods that can incorporate information in
addition to the orientation of discontinuities, such as,
for instance, planarity, weathering, spacing, or roughness
(see e.g., [16,20,23]).

Assuming an a priori probabilistic model of the
discontinuity data allows to define confidence intervals
and to test statistical hypothesis [21]. In addition, it allows
to cluster discontinuities based on their probabilities of
membership to each discontinuity set [20,25]. Mahtab and
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Yegulalp [15] proposed a clustering algorithm for the
objective partition of discontinuity data using a rejection
scheme based on a randomness test derived from the
Poisson distribution; Dershowitz et al. [20] presented an
iterative stochastic algorithm in which fractures are
assigned in each step to the discontinuity set in which they
have the highest probability of membership; and Marcotte
and Henry [21] proposed a method for maximum like-
lihood identification of discontinuity sets assuming that the
orientation of each discontinuity set can be modeled as a
mixture of truncated bivariate normal distributions.

In some cases, however, making a priori assumptions about
the probabilistic structure of discontinuity properties may be a
difficult task, and clustering methods that use no a priori
probabilistic information have been developed as well. The
definition of distance metrics (i.e., measures of the distance
between observations in the data set) that are adequate to the
structure of the data (i.c., the shape of clusters in the data set)
in each particular case has been recognized as a key issue for
the successful application of such algorithms (see e.g., [11,22]).
In that sense, the ideas for clustering of discontinuity
orientations using the fuzzy K-means algorithm originally
proposed by Harrison [11] have been extended with the
introduction of improved distance metrics and performance
measures [16,22,26]; Zhou and Maerz [23] developed a
computer program for the characterization of discontinuity
sets using several multivariate clustering algorithms; and
Klose et al. [18] proposed a clustering approach based on
vector quantization and stochastic minimization of a cost
function defined in terms of the acute angle between
discontinuity poles and the average pole of the discontinuity
set to which they are assigned [18,27].

Spectral clustering algorithms group points using eigen-
vectors of matrices derived from the data, and they have
been successfully employed in applications including
machine learning, speech processing, and computer vision
[28-30]. In this paper we demonstrate the use of a spectral
clustering algorithm as a novel approach for the identifica-
tion of rock discontinuity sets based on discontinuity
orientations. We build on the work of Ng et al. [29] and we
explore the capabilities of the spectral clustering algorithm
for identification of discontinuity sets, using a simple
similarity measure in spherical space that is specific to the
clustering of rock discontinuity orientations. We further
illustrate the performance of the algorithm in a number of
test cases, including data sets corresponding to real rock
masses, and we compare the clustering results computed
using the proposed spectral algorithm with results com-
puted with other clustering algorithms used in rock
engineering applications.

2. Representation of directional data
2.1. Introduction

We assume that rock discontinuities can be represented
as planar surfaces. Therefore, the orientation of disconti-

nuities can be expressed in terms of the orientation of their
unit normal vector; i.e., a vector of unit length with
direction normal to the discontinuity plane. We follow the
usual convention in rock mechanics that discontinuity unit
normal vectors point toward the lower hemisphere of the
unit reference sphere.

We use the method proposed by Priest [13] to denote
orientations of discontinuity unit normal vectors. That is,
the orientation of a discontinuity unit normal vector is
expressed as @ = (o, f)" (see Fig. 1), where o is the trend
(i.e., the azimuth angle from the north to the vertical plane
containing the discontinuity unit normal vector, measured
in clockwise direction), and f is the plunge (i.c., the angle
measured in a vertical plane between the discontinuity
unit normal vector and the horizontal plane) of the
downward-pointing discontinuity unit normal vector. As
shown in Fig. 1, unit vectors can also be expressed in terms
of a three-dimensional Cartesian coordinate system
X = (xl,xz,x3)T. The Cartesian coordinates, x, of a unit
vector with orientation © = («, §)T are given by [13,18]

x| = cosu cos f3, (D
Xy = sino cos f3, 2)
x3 = sinf. (3)

In this paper, we represent discontinuity unit normal
vectors by means of their equal-area lower hemisphere
projection into the unit reference sphere. Equal-area
projections are widely used for representation of rock
discontinuities in rock engineering applications (see e.g.,
[7,15,17-21,24,31]). (Equal-angle projections are com-
monly used as well (see e.g., [7,11]); for a description of
each method of projection and a discussion of its merits,
see [10].) Our election of equal-area projections for
representation of rock discontinuity data in this work only
affects the visualization of the data, but not the results of
the proposed spectral clustering algorithm.

2.2. Similarity measures

Clustering algorithms partition data into groups as a
function of measures of the distance (or similarity) between

X3

Fig. 1. Three-dimensional Cartesian coordinate system.
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observations in the data set. The use of a particular
distance metric induces a topology on the pattern space,
leading to preferential identification of clusters of certain
shape [22]. Therefore, the election of a distance metric that
is adequate for each particular case has been identified as a
key issue for the successful application of clustering
methods [11,22].

Similarity measures based on the sine of the acute angle
between discontinuity unit normal vectors have been used
in rock engineering applications before [16,22,26]. Distance
metrics based on the acute angle itself have also been
employed [15,18,19], as well as Euclidean distance metrics
[11,23], and Mahalanobis-type distance metrics that
improve the capabilities of clustering algorithms to identify
discontinuity sets of non-circular shapes [11,22].

We choose to quantify the similarity between the
orientations of two discontinuities as the sine of the acute
angle between the unit normal vectors of both disconti-
nuities. (Note that more sophisticated distance metrics
exist; however, our results show that the spectral clustering
algorithm performs well even when such simple similarity
measure is employed.) The acute angle between two unit
normal vectors expressed in Cartesian coordinates, x; and
X, can be computed as [18§]

0 = arccos |X1T - Xa, 4

where the - symbol indicates the dot product operation.
Therefore, from Eq. (4), the sine-based similarity measure
between discontinuity unit normal vectors x; and x;
becomes [22]

d(x1,%) = 1= (x] - x2)". (5)

3. Clustering algorithm

We consider a data set with N measurements of rock
discontinuity orientation that we aim to group into K
discontinuity sets. The N discontinuities can be partitioned
into K clusters (i.e., discontinuity sets) using the following
algorithm for spectral clustering [29]:

1. Compute the affinity matrix 4 € R**V with elements
given by 4; = exp(—d*(x;,x;)/20?) if i#j, and 4; =0,
where the squared distance is given by the sine-based
distance in Eq. (5). The affinity is a measure of similarity
(note that it is a function of the distance metric
employed) between the orientation of two discontinu-
ities in the data set. The scaling parameter ¢’ controls
how the affinity decays with the distance between two
observations. (The higher the value of o, the slower the
decay of affinity as distance increases.)

2. Define D as the diagonal matrix whose (i, i)th element is
computed as the sum of the ith row of 4, and compute
the matrix L = D~Y/24 D~'/2, (Dj; 1s therefore the sum
of affinities of observation i to every other observation
in the data set, and L is a normalized affinity matrix.)

3. Compute the K largest eigenvalues of L and their

corresponding eigenvectors, vi,Vs,...,Vg (chosen to be
orthogonal to each other in the case of repeated
eigenvalues). Stack such eigenvectors by columns,
forming the matrix V' =[v;vy...vg].

4. Form the matrix U from V by normalizing each
row of V¥ so that it has unit length. That is,
Uy =Vy/( VD

5. Considering each row of U as a point in RX, cluster such
points (i.e., the rows of U) into K subsets using K-means
algorithm.

6 Assign original point x; to cluster j if and only if row i of
matrix U is assigned to cluster j in Step 5.

That is, the spectral clustering algorithm performs a
transformation of the N observations of rock discontinuity
orientation in the data set, from the original space of
Cartesian coordinates of unit normal vectors to a
transformed K-dimensional space. The coordinates of
points in the transformed space are given by the normal-
ized (i.e., unit length) rows of a matrix obtained by stacking
the main eigenvectors of the normalized affinity matrix of
observations. For clusters that are connected and separate
well (i.e., the affinity is negligible for points within different
clusters and non-zero for points within the same cluster),
Ng et al. [29] show that the transformed points cluster
around K mutually orthogonal points that lie on the
surface of the K-dimensional unit sphere; in addition, they
show that these clusters correspond to the clusters of the
original data set. (Ng et al. [29] also show the conditions
under which the algorithm is expected to perform well in
other cases.)

The value of ¢° can be chosen by searching over ¢ until
an ‘“‘adequately small” distortion of clusters is obtained
after using K-means on the rows of U in Step 5 [29]. In this
research we found that values in the order of ¢ = 0.1—0.15
produce adequate clusterings results of discontinuity
orientations for the sine-based similarity measure in
Eq. (5). (In general, the optimal value of o depends on
the distance measure selected and on the data set; all results
presented in this paper are computed using a value of
o =0.12)

As an illustration of the value of the approach, Figs. 2
and 3 show an example in which spectral clustering is an
improvement over existing approaches. Discontinuities in
the quasi-vertical discontinuity set in Fig. 2 correspond to
Site c1904.1 from the MIT fracture-attitude data collec-
tion, as reproduced from Herda et al. [17]. Discontinuity
data corresponding to the quasi-horizontal discontinuity
set are taken from Hammah and Curran [22]. Disconti-
nuity sets with stereological projections of similar shapes to
those in Fig. 2 are not uncommon in rock mechanics
applications, for instance in the context of folded rock
masses (see e.g., [9,31]).

In Fig. 2(a) we show that, in this case, the fuzzy K-means
algorithm (with a sine-based distance metric) fails to
identify the natural clusters in the data set, as several
quasi-vertical discontinuities (with unit normal vectors of
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Fig. 2. Examples of difficulties encountered when clustering is performed in the original space of discontinuity orientations: (a) Fuzzy K-means (sine-
distance); (b) Fuzzy K-means (Kent-distance); and (c) Vector quantization (acute-angle distance).

trend approximately N300E) are assigned to the joint set of
quasi-horizontal discontinuities. Fig. 2(b) shows that using
a distance metric based on the Fisher—Bingham distribu-
tion (also referred to as Kent distribution) [22,32] does not
significantly improve the clustering results in this particular
case. (The Kent distribution is an elliptical distribution for
spherical data that has been shown to improve the results
of the fuzzy K-means algorithm for elliptically shaped
clusters in some cases [22].) Fig. 2(c) shows that similar
difficulties are encountered when the clustering method
based on vector quantization (defining distances as the
acute angle between discontinuity unit normal vectors) is
employed.

Fig. 3 shows the clustering results computed using the
proposed spectral clustering method. These clustering
results have been computed for the same data set as in
Fig. 2, and we have employed the sine-based similarity
measure presented in Eq. (5). Fig. 3(a) shows the
transformed space given by the rows of U (as K =2 in
this case, it corresponds to a circle with unit radius), where
we use K-means to identify partitions in the data set. Note
in Fig. 3(a) that the transformed points do form tight
clusters. Indeed, the coordinates of points are very similar
(it is even difficult to identify individual points) and it is

therefore easy to perform clustering using K-means. For
ease of visualization, a subset of 10% of data points in
Fig. 3(a) have been represented again (imposing small
random displacements) in Fig. 3(b). In addition, note that
vectors pointing from the origin to each cluster in the
transformed space are orthogonal. Fig. 3(c) shows the
clustering results obtained once that cluster partitions
assigned using K-means in Step 5 are assigned to the
corresponding points in the original space of discontinuity
orientations in Step 6. The algorithm is shown to perform
well (even when such simple sine-based similarity measure
is employed), and it successfully separates discontinuities
belonging to both discontinuity sets as a human interpreter
would do.

4. Example analyses
4.1. San manual copper mine data set

We start with a data set of N =286 discontinuity
orientation measurements from San Manual copper mine
in Arizona, USA [19]. Klose et al. [18] used this data set as
a benchmark of several clustering algorithms in which they
considered partitions with K =3 discontinuity sets. In
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Fig. 3. Results of the proposed spectral clustering algorithm: (a) Results of K-means clustering in the transformed space; (b) Subset of data plotted in (a)

(jittered for ease of visualization); and (c) Partitions in the original space.

Fig. 4 we use the same data set as a benchmark, and we
compare the results of the spectral clustering algorithm
(also with K = 3 discontinuity sets; see Fig. 4(d)) with the
results of other common algorithms for clustering of
discontinuity orientation data. (See Figs. 4(a)—(c).)

We compare our results with the results of the algorithm
proposed by Shanley and Mahtab [19] (see Fig. 4(a)),
because it is one of the first algorithms for objective
clustering of discontinuity orientation data that is still
widely used today [18]. We also compare our results with
the results of the fuzzy K-means algorithm proposed by
Hammah and Curran [16] (see Fig. 4(b)). In this case, we
used a distance metric based on the sine of the angle
between discontinuity unit normal vectors to compute the
fuzzy K-means partitions. (Partitions computed using a
distance definition based on the Kent distribution [22] were
equivalent to those in Fig. 4(b) and, for the sake of brevity,
they are not reproduced herein.) Finally, we compare our

results with the results of the vector quantization algorithm
(with a distance metric defined in terms of the acute angle
between discontinuity unit normal vectors) presented by
Klose et al. [18] (see Fig. 4(c)).

In Fig. 5 we show the K-means partitions computed in
the transformed space of the rows of matrix U in Step 5 of
the spectral clustering algorithm. In this case K = 3, and
data points in the transformed space are therefore located
on the surface of the unit three-dimensional sphere. Note
that vectors pointing from the origin to each cluster
average in the transformed space are again orthogonal to
each other. Table 1 lists the average directions of the
normal unit vectors of each identified discontinuity set
(in trend/plunge notation). The spectral clustering algo-
rithm is shown to perform well, providing clustering
partitions that are very similar to those obtained with the
other clustering methods. The average directions of each
discontinuity set computed with the spectral clustering
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Fig. 4. Comparison of clustering results for different algorithms, considering K = 3 discontinuity sets (San Manual mine data set [19]): (a) Shanley and
Mabhtab; (b) Fuzzy K-means; and (c) Vector quantization; (d) Spectral clustering.
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Fig. 5. K-means clustering in the transformed space of rows of U for the
San Manual mine data set.

algorithm are further shown to agree well with the average
directions of discontinuity sets computed with the other
algorithms considered.

Since there is no ‘“‘ground truth” for this clustering
problem [18], it is difficult to know which of the clustering
algorithms is better, or what partition should be preferred.

In such circumstances, the election of a clustering
algorithm may be based on performance, ease of imple-
mentation, and issues related to personal preferences and
tradition in a particular field. In that sense, in Fig. 2 we
showed an example case in which the spectral clustering
algorithm provides more natural partitions than other
algorithms. Additional advantage of the spectral clustering
algorithm is that it can be easily implemented using
common software packages for numerical analysis, such
as the R environment for statistical computing [33] or
MATLAB, which include functions for efficient computation
of eigenvalues and eigenvectors, and for K-means cluster-
ing. Furthermore, the convergence of K-means clustering
in Step 5 of the algorithm is usually fast, as we perform
clustering in a transformed space where data are expected
to form tight orthogonal clusters (e.g., see Fig. 3(a)). For
instance, our implementation in the R language of the
spectral clustering algorithm took a mean (after ten test
cases) of 487 ms to compute the clustering results presented
in Fig. 3. If faster convergence is needed, we could take

'We used K-means algorithm using conventional random initialization
and 10 restarts to compute the spectral clustering results that we present in
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Table 1

Direction of average unit normal vectors for each discontinuity set (San Manual Mine data set)

Set Shanley and Mahtab® Fuzzy K-means Vector quantization® Spectral clustering
1 (o) 072/14 070/10 068/15 073/12
2(L) 163/14 166/09 171/10 167/08
3(4) 303/81 308/73 310/73 314/76

#Values reproduced from Klose et al. [18].

Fig. 6. Observations of discontinuities at exposed rock face.

advantage of the orthogonality of cluster centers in the
transformed space to improve the rate of convergence of
the K-means algorithm by providing “good” initial cluster
center estimates that are approximately orthogonal to each
other [29].

4.2. Data set of discontinuities in a serpentine rock mass

We further test the spectral clustering algorithm using a
data set of 185 measures of discontinuity orientations in a
serpentine rock mass in southern Spain. Discontinuity
orientation data are obtained by means of compass
measurements of discontinuities selected using the scanline
sampling method at exposed rock faces [13,34], and several
scanlines are employed to reduce the effects of sampling
bias. Fig. 6 shows typical discontinuity traces observed at
exposed rock faces at the site. Fig. 7 (plotted with program
GeorLoT [35]) shows an equal-area, lower hemisphere

(footnote continued)

this work. Less than 10 iterations were needed for K-means convergence in
all cases. Computations were performed in a Pentium IV computer
(3.4 GHz processor; 1024 MB RAM) running the GNU/Linux operating
system.

Fig. 7. Data set of discontinuity orientations in a serpentine rock mass in
Ronda, southern Spain.

projection of the normal unit vectors of each discontinuity
mapped, together with contours that represent the esti-
mated frequency of discontinuity normals in each direction
in space. (Contour maps of unit normal vectors are
commonly used to identify discontinuity sets in rock
engineering projects; within that context, Fig. 7 can help
a trained analyst to decide the number of discontinuity sets
that should be used in a particular application.)

As an example, in Fig. 8§ we present the computed
spectral clustering partitions when K = 2 and 3 disconti-
nuity sets are considered. For comparison, the results of
the fuzzy K-means clustering with sine-based distance of
Hammah and Curran [16] are presented as well. (The
results using the distance metric based on the Kent
distribution were found to be identical and they are not
reproduced herein.) The clustering results in Fig. 8 show
that the spectral clustering algorithm provides very similar
partitions to those obtained with fuzzy K-means. As in the
San Manual Mine data set, there is no “ground truth” to
this clustering problem [18], and it is difficult to know
which partition should be preferred. Based on visual
observation of Fig. 8, however, we consider that partitions
computed with the spectral clustering results are at least as
natural as partitions computed with the fuzzy K-means
algorithm. Similarly, Table 2 shows that the average unit
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Fig. 8. Identified discontinuity sets for the serpentine rock mass data set. (a) Spectral clustering; K = 2; (b) Fuzzy K-means clustering; K = 2; (c) Spectral

clustering; K = 3; and (d) Fuzzy K-means clustering; K = 3.

Table 2
Direction of average unit normal vectors for each discontinuity set
(serpentine rock mass data set)

Set Fuzzy K-means Spectral clustering
(a) K=2

1 (o) 287/01 108/05

2 (x) 203/17 205/18

(b) K=3

1 (o) 108/04 108/05

2(D) 225/37 227/37

3(x) 008/03 009/03

normal vectors for each discontinuity set computed with
both algorithms are very similar as well.

Fig. 9 shows the results of K-means clustering in the
transformed space of the rows of U. For the case of two
discontinuity sets (K =2; see Fig. 9(a)) we show that
observations in the cluster indicated with the circle (o)
symbol are grouped close to the cluster average, suggesting
a high degree of membership to that cluster. Similarly, note
that memberships of several discontinuities assigned to the
set labeled with the cross (x) symbol are not so certain.

A similar discussion applies to the case of three discontinuity
sets (K = 3; see Fig. 9(b)), where the separation between
discontinuity sets labeled with the triangle (A) and cross (x)
symbols is less crisp than their separation with respect to the
discontinuity set labeled with circle (o) symbols.

Techniques for automatic estimation of the “optimal”
number of partitions could be used to provide an estimate
of the most adequate number of discontinuity sets in the
rock mass in this case (see e.g., [11,16,26]). The automatic
identification of the optimal number of partitions is,
however, beyond the scope of this paper, and we do not
discuss validity measures herein. The selection of the
number of clusters should be done by an expert [3,11,18],
depending on the purpose of the rock mass characteriza-
tion study, on the geometry of the excavation, and on the
engineering performance of rock mass models obtained
after considering the different clustering alternatives.

5. Conclusions

We present a new approach based on spectral clustering
for grouping of discontinuities and for identification of
discontinuity sets based on their orientation. We demon-
strate the use of the spectral clustering algorithm with a



1060 R. Jimenez-Rodriguez, N. Sitar | International Journal of Rock Mechanics & Mining Sciences 43 (2006) 1052-1061

0.6 1

0.4 x

0.2

0.0

U,

-0.2 1 X
-0.4 1

-0.6

-0.8 - °

(a) U,

Us

1.0
¥
0.5 a
A
A
0.0
-]
R 1.0
0.5 0.5
0.0
05 o
1.0 To QY
1.0 05 00 05 1.0
(b) Ui

Fig. 9. K-means clustering in the transformed space (serpentine rock mass data set).

simple measure of similarity that is specific to the problem
of clustering of rock discontinuity orientations, defined as
the sine of the acute angle between the directions of
discontinuity unit normal vectors.

The spectral clustering algorithm makes a transforma-
tion of the original discontinuity orientation data into a
transformed space where clustering is performed. The
advantage of such transformation is that it is easier to
perform clustering in the transformed space as, for K
discontinuity sets, points in the transformed space form
tight clusters around K mutually orthogonal points that lie
on the surface of the K-dimensional unit sphere. The
coordinates of points in the transformed space are given by
the normalized rows of a matrix constructed using the main
eigenvectors of the normalized affinity matrix. The affinity
matrix is defined in terms of the distance between
observations in the data set and in terms of a scaling
parameter ¢>. We show that values of the scaling
parameter in the order of ¢ =0.12 produce adequate
clustering results in a number of test for the sine-based
similarity measure considered.

The performance of the spectral clustering algorithm is
studied using benchmark test cases based on real rock
discontinuity data sets. The results show that the algorithm
exhibits good clustering capabilities, even when a simple
sine-based similarity measure is considered. In particular,
the discontinuity set partitions computed with the spectral
clustering algorithm are shown to be very similar to those
computed with a number of clustering algorithms (and
their related distance measures) that are commonly used in
rock engineering applications. We also show that the
average directions of discontinuity sets identified with the
spectral clustering algorithm agree well with the average
directions of discontinuity sets identified with such
commonly used algorithms. Furthermore, we show an
example case with data sets of discontinuity orientations
compiled from the literature, in which the spectral
clustering algorithm provides more natural partitions than
the other algorithms considered. Additional advantages of
the algorithm are that convergence is fast, and that it can

be ecasily (and efficiently) implemented using popular
software packages for numerical analysis such as R or
MATLAB.
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