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Abstract

We present a novel methodology for estimation of equivalent Mohr–Coulomb strength parameters that can be used for design of

supported tunnels in elasto-plastic rock masses satisfying the non-linear empirical Hoek–Brown failure criterion. We work with a general

adimensional formulation of the Hoek–Brown failure criterion in the space of normalized Lambe’s variables for plane stress, and we

perform linearization considering the stress field in the plastic region around the tunnel. The procedure is validated using analytical

solutions to a series of benchmark test cases. Numerical solutions are also employed to validate the procedure in cases for which

analytical solutions are not available. Results indicate that the stress field in the plastic region around the tunnel, as well as the

linearization method employed and the quality of the rock mass, has a significant impact on computed estimates of equivalent

Mohr–Coulomb strength parameters. Results of numerical analyses also show that our proposed linearization method can be employed

to estimate loads and moments on the tunnel support system. We recommend the equating model responses (EMR) method to compute

equivalent Mohr–Coulomb strength parameters when the tunnel support pressure is accurately known, and we further show that our

newly introduced linearization method can be employed as an alternative to the best fitting in the existing stress range (BFe) and best

fitting in an artificial stress range (BFa) methods, providing performance estimates that are generally better than estimates of the BFe and

BFa methods when differences with the response of the Hoek–Brown rock mass are of engineering significance (say more than 10%).

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Rock mass strength is a non-linear function of stress
level. The empirical Hoek–Brown (HB) failure criterion
(see e.g., [1–5]) accounts for this observation, and it is the
criterion most commonly employed to characterize failure
of rock masses in tunnelling projects. The HB non-linear
failure criterion is often linearized in practical applications
to obtain an ‘‘equivalent’’ linear failure criterion in terms of
Mohr–Coulomb (MC) parameters. One reason to explain
such interest to linearize the HB failure criterion is that
certain software packages commonly employed for tunnel
e front matter r 2008 Elsevier Ltd. All rights reserved.
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design do not provide the HB failure criterion [6]. In
addition, geotechnical strength parameters have been
traditionally expressed in terms of angle of friction, f,
and cohesion, c, values, which makes many practitioners
more used to work with the equivalent MC parameters
than with the original HB parameters. Furthermore,
although (almost) exact closed-form solutions to compute
stresses and displacements of axisymmetric tunnels in rock
masses with the HB failure criterion are now available
(see e.g., [7–9]), equivalent MC parameters can also be
employed by tunnel designers to compute fast approximate
estimates—suitable, for instance, for preliminary design—
of tunnel performance using the convenient rigorous
graphical solutions for MC rock masses developed by
Carranza-Torres [10].
Hoek and Brown [4] propose a method to linearize the

HB failure criterion using eight simulated triaxial tests

dx.doi.org/10.1016/j.ijrmms.2007.12.003
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conducted at constant increments of the confining pressure,
s3, within the interval 0os3o0:25sci, where sci is the uni-
axial compressive strength of the intact rock. (For shallow
tunnels, the upper bound of 0:25sci was later increased to
the value of the overburden pressure [6].) Values of
equivalent MC parameters, c and f, are then computed
by least squares fitting of a straight line to the results of
such simulated triaxial tests. More recently, Hoek et al. [5]
propose to linearize in the s12s3 stress space, equating the
areas covered by the HB and the MC criteria for the stress
interval stos3os3;max, where st is the tensile strength of
the rock mass and s3;max is the maximum confining stress
level considered.

Note, however, that such stress ranges do not agree with
the actual stress state around the tunnel; instead, they are
artificial stress intervals, defined to provide equivalent
parameters for each individual tunnel considered [5,6]. In
other words, methods described above consider only
partially the stress state in the rock mass when performing
the linearization and, for instance, they do not consider the
effect of the tunnel support pressure on the linearization
results. The consideration of the actual stress field around
the tunnel, however, is a crucial aspect of the linearization
problem, as the non-linear failure criterion can only be
substituted by a linear criterion, with an acceptable error, if
an adequate and realistic stress range is considered. This
observation led to recent research to estimate equivalent
MC parameters for supported tunnels in rock and, for
instance, Sofianos and Nomikos [6] (see also [11,12])
propose a method to linearize the HB failure criterion in
which the real stress field within the plastic region around
the tunnel (including the influence of the tunnel support
pressure) is considered.

In this work we present a novel methodology for the
estimation of equivalent MC strength parameters that can
be used for design of supported tunnels in elasto-plastic
rock masses with the HB failure criterion. To that end, we
work with a general adimensional formulation of the
HB failure criterion in the space of normalized Lambe’s
stress variables developed by Serrano et al. [13], and we
perform a simple linearization procedure in which the
actual stress field in the plastic region around the tunnel is
considered.

2. Estimation of equivalent strength parameters

2.1. An adimensional formulation of the HB failure criterion

The generalized HB failure criterion provides empirical
estimates of rock mass strength. It can be expressed as (see
e.g., [4,5])

s1 ¼ s3 þ sci mb

s3
sci

þ s

� �a

, (1)

where s1 and s3 are the major and minor principal stresses;
sci is the uniaxial compressive strength of the intact rock; s

and a are parameters that depend on the quality of the rock
mass (as expressed, for instance, by the Geological
Strength Index, GSI); and mb is a parameter that depends
on the type of rock and on the quality of the rock mass.
The failure criterion of Eq. (1) can also be expressed in

terms of Lambe’s variables for plane strain
(p ¼ ðs1 þ s3Þ=2; q ¼ ðs1 � s3Þ=2). We obtain the follow-
ing general adimensional equation [13]:

p�0 ¼ ð1þ ð1� aÞq�k
Þq�, (2)

where p� and q� are normalized Lambe variables (i.e.,
p� ¼ p=b; q� ¼ q=b); p�0 is defined as p�0 ¼ p� þ z; and k, b, z
are parameters that depend on the parameters of the
generalized HB failure criterion:

k ¼
1� a

a
, (3)

b ¼ Asci, (4)

z ¼
s

mbA
, (5)

where A is defined as Ak ¼ mbð1� aÞ=21=a.
In this work we have employed the last available version

of the HB failure criterion [5], with a value of the damage
factor of D ¼ 0. Eqs. (2)–(5), however, should be valid even
if the procedures to compute mb, s, and a change in future
versions of the HB criterion, as long as the overall form of
the HB criterion is maintained. (Formulas to compute mb,
a and s usually change for successive versions of the
HB criterion, but the overall form of the expression in
Eq. (1) has been maintained, for more than 25 years, since
the early versions of the criterion.)

2.2. A simple linearization procedure

Fig. 1 shows a circular supported tunnel in an elasto-
plastic rock mass that satisfies the HB failure criterion.
The in situ stress field is considered hydrostatic with
s1 ¼ s3 ¼ s0, and the tunnel support pressure is sA. Fig. 1
also shows two points (A and B) at the boundaries of the
plastic region formed around the tunnel. Stresses at points
A and B define the range of stresses at the zone around
the tunnel where the rock mass has reached its ultimate
strength and, therefore, where the strength criterion consi-
dered is significant.
Point A is located at the tunnel lining, where the support

pressure acts. We will assume that the support pressure at
A is the minor principal stress at that point, as that is the
most common case in practice. (Note, however, that there
might be cases in which the internal pressure at the lining is
in fact the major principal stress; e.g., in pressurized
hydraulic tunnels.) Point B is located at the interface
between the plastic region around the tunnel and the elastic
region, where the rock mass did not reach its peak strength.
We use sB to denote the radial stress acting at the elasto-
plastic interface at point B. (sB is also the critical pressure;
i.e., the critical support pressure at the tunnel lining needed
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Fig. 2. Example representation of stresses acting at the plastified region

around the tunnel and procedure for linearization of the Hoek–Brown -

failure criterion within such stress range. (a) Mohr’s circles representing

the stress state at the boundaries of the plastic region around the tunnel.

(b) Linearization of the Hoek–Brown failure criterion considering the

stress state within the plastic region.
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Fig. 1. Plastic region around a tunnel.
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to avoid the formation of a plastic region around the
tunnel [6].)

From elasticity theory we know that Lambe’s p variable
must remain constant within the elastic region (this obser-
vation is also valid for point B, which is at the boundary of
the elastic region). Therefore, as shown in Fig. 2(a), the
(normalized) deviatoric stress at failure at point B, q�B, can
be obtained following the vertical arrow from p�B ¼ s�0 up
to its intersection with the HB failure envelope. (Fig. 2(a)
also shows the Mohr’s circles that represent the stress
states at points A and B; i.e., at the boundaries of the
plastified region around the tunnel.) The approach to
obtain the stress state at failure at point A is slightly
different. At point A, we know that the support pressure at
the tunnel lining corresponds to the minor principal stress
s3 ¼ sA. Therefore, its deviatoric stress at failure, q�A,
can be computed following the arrow at 45� from p� ¼ s�A
up to its intersection with the HB failure envelope.
(See Fig. 2(a).)

To perform the linearization of the HB criterion that
provides equivalent MC parameters, we start by plotting a
straight line passing through points A and B. Such line can
be defined as a function of its slope angle, yAB, and of its
ordinate at the origin, C�AB (see Fig. 2(b)). Such lineariza-
tion is conservative, as it provides a lower bound of
strength values; that is, the strength values computed in
this way are smaller than those provided by the HB criter-
ion for all stresses between pA and pB. To improve the
computed predictions, we also plot a straight line parallel
to the line from A to B that passes through M, which is the
point whose deviatoric stress is the mean of the deviatoric
stresses at points A and B (that is, q�M ¼ ðq

�
A þ q�BÞ=2; see

Fig. 2(b)). This additional line, not shown in Fig. 2(b) to
maintain clarity, would have a slope of value yM ¼ yAB and
an ordinate at the origin of value C�M . The equivalent
instantaneous friction angle can then be computed as

sinf ¼ tan yAB. (6)

To compute the equivalent cohesion we use an ordinate
at the origin of intermediate value between C�AB and C�M ;
i.e., C� ¼ ðC�AB þ x�C ðC

�
M � C�ABÞÞ, where 0:0px�Cp1:0.

(In Section 3 we present a sensitivity analysis to compute
the ‘‘optimum’’ value of x�C ; results in this paper are
computed using x�C ¼ 0:60.) The equivalent cohesion can
then be computed as

c ¼
bC�

cosf
. (7)

Note that, for the sake of clarity, we describe the
proposed linearization method using a simple graphical
procedure, as closed-form expressions to compute q� from
Eq. (2) are not available in general. (They are only avai-
lable for certain values of a such as, for instance, a ¼ 1

2
.)

Routines to compute exact values of q�A and q�B, however,
can be easily implemented using standard software
packages for numerical analysis; similarly, the values
of yAB, and of C�AB and C�M can be easily computed
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(using basic geometry) once the coordinates of points A �

ðp�A; q
�
AÞ and B � ðp�B; q

�
BÞ are known in Fig. 2. That is the

approach that we follow to compute the results presented
in this work.

3. Example analyses

3.1. Influence of rock mass quality and of support pressure

Fig. 3 shows equivalent MC parameters computed using
the linearization procedure described in Section 2 for rock
masses of different qualities and for different values of the
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Fig. 3. Equivalent MC parameters for different qualities of the rock mass

and different levels of support pressure. (Computed for mi ¼ 12,

sci ¼ 80MPa, and s0 ¼ 10MPa.) (a) Cohesion vs GSI, (b) friction angle

vs GSI.
tunnel support pressure. (Tunnel support pressure is
expressed as a function of the critical pressure, sB.) In all
cases, we have considered a rock mass with mi ¼ 12 and
sci ¼ 80MPa. The natural in situ stress field is considered
hydrostatic with s0 ¼ 10MPa.
Fig. 3 shows that the equivalent MC parameters heavily

depend on the quality of the rock mass and on the tunnel
support pressure. It is also observed that, given a constant
GSI value, the equivalent cohesion increases as support
pressure increases, whereas the equivalent friction angle
decreases as support pressure increases. Similarly, as
expected for a given constant value of the tunnel support
pressure, results indicate that the equivalent cohesion and
the equivalent friction angle increase as the rock mass
quality increases.

3.2. Analytical solutions of tunnel response

We have also compared equivalent MC strength para-
meters computed with our linearization procedure pre-
sented in Section 2 with MC parameters computed using
other linearization methods. In particular, we have
compared them with the BFa (‘‘best fitting in an artificial
stress range’’) method proposed by Hoek et al. [5]; and with
the EMR (‘‘equating model responses’’) and BFe (‘‘best
fitting in the existing stress range’’) methods proposed by
Sofianos and Nomikos [6]. Table 1 lists equivalent
MC parameters computed with these methods in several
benchmark test cases. For ease of comparison, benchmark
test cases listed in Table 1 are identical to the validation
cases considered by Sofianos and Nomikos [6] (see Table 2
in [6]). Following the notation in [6], sub-case (a)
corresponds to the unsupported case (i.e., sA ¼ 0:0),
whereas sub-case (b) corresponds to a case with a
supported tunnel with support pressure sA ¼ 0:2sB.
Table 2 lists differences (expressed as percentage)

between the equivalent MC parameters computed with
the linearization method proposed herein and MC
parameters computed with the BFe, EMR, and BFa
linearization methods. Results show that cohesion values
computed with our linearization method tend to be lower
than those computed with the BFe method (up to 65%)
and the EMR method (up to 30%); and that equivalent
friction angles computed with our method tend to be
higher (up to 10%) than those computed with the BFe and
EMR methods. (Differences tend to higher for cases
without tunnel support and, in general, for cases with
lower GSI values.) Results also show that differences with
the results of our method tend to be significantly higher for
the BFa method (which does not consider the actual stress
field around the tunnel) than for the EMR and BFe
methods.
In Table 3 we study the predictions of performance

(with respect to radius of the plastic region, re, critical
support pressure, pe, and radial convergence, u) using
analytical solutions for the original HB rock masses, and
we compare such predictions with those computed using
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Table 1

Equivalent Mohr–Coulomb parameters computed with different linearization methods using the benchmark test cases presented by Sofianos and

Nomikos [6]

Case Hoek–Brown rock mass Mohr–Coulomb rock mass

mb s a BFea EMRa BFaa This work

c (MPa) f (deg) c (MPa) f (deg) c (MPa) f (deg) c (MPa) f (deg)

1(a) 2.0121 3:87E� 03 0.506 1.117 50.62 1.185 49.32 1.707 43.89 1.009 51.56

1(b) 2.0121 3:87E� 03 0.506 1.339 48.73 1.444 47.58 1.707 43.89 1.291 49.09

2(a) 0.6567 4:19E� 04 0.522 0.102 46.18 0.106 44.96 0.144 40.97 0.089 47.30

2(b) 0.6567 4:19E� 04 0.522 0.127 44.06 0.138 42.88 0.144 40.97 0.119 44.66

3(a) 0.6567 4:19E� 04 0.522 0.720 21.77 0.594 21.43 0.585 23.98 0.455 24.05

3(b) 0.6567 4:19E� 04 0.522 1.004 19.48 1.089 18.51 0.585 23.98 0.950 19.87

4(a) 6.6746 6:22E� 02 0.501 1.888 57.39 1.953 56.65 2.651 49.56 1.875 57.50

4(b) 6.6746 6:22E� 02 0.501 1.950 56.80 2.006 56.22 2.651 49.56 1.942 56.86

5(a) 4.4695 2:05E� 02 0.502 1.098 48.74 1.159 47.42 1.597 42.77 0.970 49.87

5(b) 4.4695 2:05E� 02 0.502 1.343 46.67 1.453 45.47 1.597 42.77 1.295 47.04

6(a) 0.5514 1:38E� 04 0.544 0.073 27.62 0.059 27.33 0.068 28.37 0.047 29.73

6(b) 0.5514 1:38E� 04 0.544 0.103 25.19 0.112 24.13 0.068 28.37 0.099 25.50

7(a) 0.6625 2:15E� 04 0.533 0.085 42.37 0.081 41.49 0.116 38.42 0.065 44.04

7(b) 0.6625 2:15E� 04 0.533 0.115 39.88 0.126 38.68 0.116 38.42 0.110 40.25

8(a) 0.6625 2:15E� 04 0.533 0.645 19.40 0.496 19.28 0.495 22.03 0.391 21.54

8(b) 0.6625 2:15E� 04 0.533 0.904 17.32 0.979 16.44 0.495 22.03 0.861 17.62

9(a) 0.4018 4:54E� 05 0.585 0.057 22.31 0.039 22.37 0.046 24.14 0.036 23.77

9(b) 0.4018 4:54E� 05 0.585 0.081 20.34 0.088 19.51 0.046 24.14 0.078 20.52

BFe represents the ‘‘best fitting in the existing stress range’’ method [6]; EMR represents the ‘‘equating model responses’’ method [6]; and BFa represents

the ‘‘best fitting in an artificial stress range’’ method [5].
aValues reproduced from Sofianos and Nomikos [6].

Table 2

Differences (expressed as percentage) between values of cohesion and

friction angle computed with the linealization method proposed in this

work and those computed using linealization methods proposed by Hoek

et al. [5] and Sofianos and Nomikos [6]

Case Mohr–Coulomb rock mass

BFe EMR BFa

dc (%) df (%) dc (%) df (%) dc (%) df (%)

1(a) 10.74 �1.82 17.48 �4.34 69.23 �14.87

1(b) 3.71 �0.74 11.84 �3.09 32.21 �10.60

2(a) 15.14 �2.37 19.65 �4.95 62.54 �13.39

2(b) 6.33 �1.35 15.54 �3.99 20.56 �8.27

3(a) 58.17 �9.48 30.49 �10.89 28.51 �0.29

3(b) 5.68 �1.95 14.63 �6.83 �38.42 20.70

4(a) 0.69 �0.18 4.15 �1.47 41.38 �13.80

4(b) 0.41 �0.11 3.30 �1.13 36.51 �12.84

5(a) 13.22 �2.26 19.51 �4.91 64.67 �14.23

5(b) 3.67 �0.78 12.16 �3.33 23.28 �9.07

6(a) 54.42 �7.09 24.81 �8.06 43.85 �4.56

6(b) 4.30 �1.21 13.42 �5.37 �31.14 11.26

7(a) 31.32 �3.78 25.14 �5.78 79.22 �12.75

7(b) 4.64 �0.92 14.65 �3.90 5.55 �4.54

8(a) 65.12 �9.94 26.98 �10.50 26.72 2.27

8(b) 5.05 �1.70 13.77 �6.69 �42.48 25.04

9(a) 56.43 �6.14 7.03 �5.88 26.24 1.56

9(b) 3.54 �0.88 12.49 �4.92 �41.20 17.64
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equivalent MC parameters computed using our lineariza-
tion method as well as the BFe, EMR, and BFa methods.
For ease of comparison of results, the same benchmark test
cases considered by Sofianos and Nomikos [6] have also
been employed in this case. The response of the rock mass
with equivalent MC parameters has been computed using
the expressions of Carranza-Torres [10]. (Instead of using
the expressions previously developed by Duncan Fama
[14]; this explains the slight differences between results
presented in Table 3 of this note and in Table 4 of [6].)
In Table 4 we present the relative errors (expressed as

percentage) between performance predictions computed
considering the HB rock mass and also equivalent MC
parameters for different linearization methods. Table 5 lists
the number of cases, out of 42 cases considered, in which
the relative errors of predictions of plastic radius, critical
support pressure, or radial convergence (when compared to
the HB rock mass predictions) are greater than 5%, 10%,
and 20%.
Results indicate that the EMR method [6] provides the

smallest relative errors with respect to plastic radius,
critical support pressure, and radial convergence. Such
excellent results, however, have been computed for cases in
which support pressures are known with high accuracy;
the agreement is not so good when the estimation of the
support pressure is poor, as it often happens in real
tunnelling projects. In fact, Sofianos and Nomikos [6]
recommend to use the BFe or the BFa methods as an
alternative to the EMR method when the support pressure
is not known with sufficient accuracy.
Based on our results, we argue that our newly proposed

linearization procedure can be employed as a simple and
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Table 3

Estimates of radius of the plastic region, critical pressure, and radial convergence of several benchmark test tunnel cases

Case c
(deg)

HB rock massa Mohr–Coulomb rock mass

re
(m)

pe
(MPa)

u (mm) BFe EMR BFa This work

re
(m)

pe
(MPa)

u (mm) re
(m)

pe
(MPa)

u (mm) re
(m)

pe
(MPa)

u (mm) re
(m)

pe
(MPa)

u (mm)

1(a) 0 5.83 1.64 8.40 5.79 1.56 8.35 5.83 1.64 8.40 5.85 1.84 8.22 5.80 1.54 8.44

1(b) 0 5.55 1.64 7.41 5.54 1.60 7.42 5.55 1.64 7.42 5.64 1.84 7.51 5.54 1.60 7.43

1(a) 10 5.83 1.64 8.74 5.79 1.56 8.68 5.83 1.64 8.74 5.85 1.84 8.52 5.80 1.54 8.79

1(b) 10 5.55 1.64 7.55 5.54 1.60 7.57 5.55 1.64 7.57 5.64 1.84 7.68 5.54 1.60 7.59

1(a) 30 5.83 1.64 10.15 5.79 1.56 10.04 5.83 1.64 10.17 5.85 1.84 9.77 5.80 1.54 10.24

1(b) 30 5.55 1.64 8.15 5.54 1.60 8.18 5.55 1.64 8.19 5.64 1.84 8.39 5.54 1.60 8.21

2(a) 0 6.31 0.22 6.16 6.23 0.21 6.07 6.31 0.22 6.16 6.31 0.24 5.99 6.27 0.20 6.21

2(b) 0 5.82 0.22 5.05 5.85 0.21 5.15 5.86 0.22 5.15 5.98 0.24 5.26 5.85 0.21 5.17

2(a) 10 6.31 0.22 6.56 6.23 0.21 6.45 6.31 0.22 6.56 6.31 0.24 6.34 6.27 0.20 6.62

2(b) 10 5.82 0.22 5.21 5.85 0.21 5.32 5.86 0.22 5.32 5.98 0.24 5.46 5.85 0.21 5.35

3(a) 0 19.61 5.79 398.20 16.61 5.62 292.51 19.63 5.79 398.71 16.45 5.40 301.88 19.28 5.51 411.22

3(b) 0 10.82 5.79 110.53 10.76 5.72 111.33 10.88 5.79 111.92 10.44 5.40 112.74 10.82 5.71 113.12

3(a) 10 19.61 5.79 630.72 16.61 5.62 437.21 19.63 5.79 636.09 16.45 5.40 451.93 19.28 5.51 655.76

3(b) 10 10.82 5.79 138.60 10.76 5.72 139.78 10.88 5.79 140.83 10.44 5.40 141.23 10.82 5.71 142.45

4(a) 0 5.19 0.57 2.12 5.18 0.56 2.12 5.19 0.57 2.12 5.21 0.67 2.11 5.18 0.56 2.12

4(b) 0 5.14 0.57 2.08 5.14 0.56 2.08 5.14 0.57 2.08 5.17 0.67 2.08 5.14 0.56 2.08

4(a) 10 5.19 0.57 2.13 5.18 0.56 2.13 5.19 0.57 2.13 5.21 0.67 2.12 5.18 0.56 2.13

4(b) 10 5.14 0.57 2.08 5.14 0.56 2.08 5.14 0.57 2.08 5.17 0.67 2.08 5.14 0.56 2.08

4(a) 30 5.19 0.57 2.16 5.18 0.56 2.16 5.19 0.57 2.16 5.21 0.67 2.15 5.18 0.56 2.16

4(b) 30 5.14 0.57 2.10 5.14 0.56 2.10 5.14 0.57 2.10 5.17 0.67 2.10 5.14 0.56 2.10

5(a) 0 5.99 1.85 6.03 5.94 1.76 5.98 5.99 1.85 6.03 6.01 2.04 5.90 5.96 1.73 6.06

5(b) 0 5.64 1.85 5.17 5.63 1.80 5.17 5.64 1.85 5.18 5.74 2.04 5.26 5.63 1.80 5.18

5(a) 10 5.99 1.85 6.33 5.94 1.76 6.26 5.99 1.85 6.33 6.01 2.04 6.17 5.96 1.73 6.37

5(b) 10 5.64 1.85 5.30 5.63 1.80 5.30 5.64 1.85 5.30 5.74 2.04 5.41 5.63 1.80 5.31

5(a) 30 5.99 1.85 7.60 5.94 1.76 7.48 5.99 1.85 7.62 6.01 2.04 7.32 5.96 1.73 7.69

5(b) 30 5.64 1.85 5.81 5.63 1.80 5.81 5.64 1.85 5.82 5.74 2.04 6.03 5.63 1.80 5.83

6(a) 0 13.33 0.49 76.67 11.75 0.47 60.20 13.32 0.49 76.50 11.74 0.47 60.94 13.04 0.46 77.00

6(b) 0 8.61 0.49 28.82 8.52 0.48 28.54 8.60 0.49 28.70 8.53 0.47 29.68 8.54 0.48 28.78

6(a) 10 13.33 0.49 105.94 11.75 0.47 79.64 13.32 0.49 106.25 11.74 0.47 80.73 13.04 0.46 106.66

6(b) 10 8.61 0.49 33.48 8.52 0.48 33.13 8.60 0.49 33.37 8.53 0.47 34.67 8.54 0.48 33.46

7(a) 0 7.13 0.28 12.44 6.92 0.26 11.80 7.13 0.28 12.43 6.96 0.29 11.50 7.07 0.26 12.57

7(b) 0 6.20 0.28 8.82 6.17 0.27 8.82 6.20 0.28 8.83 6.32 0.29 9.11 6.18 0.27 8.86

7(a) 10 7.13 0.28 13.84 6.92 0.26 13.01 7.13 0.28 13.84 6.96 0.29 12.63 7.07 0.26 14.03

7(b) 10 6.20 0.28 9.26 6.17 0.27 9.26 6.20 0.28 9.27 6.32 0.29 9.63 6.18 0.27 9.31

8(a) 0 27.63 6.23 1178.52 21.74 6.07 749.68 27.63 6.23 1178.02 21.41 5.79 780.55 26.84 5.97 1190.15

8(b) 0 12.73 6.23 230.35 12.58 6.16 228.98 12.75 6.23 230.82 11.94 5.79 225.65 12.67 6.15 233.06

8(a) 10 27.63 6.23 2127.11 21.74 6.07 1239.18 27.63 6.23 2142.97 21.41 5.79 1291.29 26.84 5.97 2152.92

8(b) 10 12.73 6.23 306.05 12.58 6.16 303.91 12.75 6.23 307.29 11.94 5.79 296.56 12.67 6.15 310.38

9(a) 0 24.59 0.58 398.67 18.89 0.57 239.04 24.80 0.58 404.83 19.01 0.55 253.24 22.91 0.56 360.74

9(b) 0 11.36 0.58 77.28 11.17 0.58 75.67 11.29 0.58 76.12 10.90 0.55 76.82 11.22 0.58 76.53

9(a) 10 24.59 0.58 692.52 18.89 0.57 376.44 24.80 0.58 710.96 19.01 0.55 401.69 22.91 0.56 615.96

9(b) 10 11.36 0.58 98.93 11.17 0.58 96.56 11.29 0.58 97.35 10.90 0.55 97.90 11.22 0.58 97.87

Performance estimates have been computed using the parameters for the original HB rock mass and the equivalent MC parameters obtained after

linearization with several methods.
aValues reproduced from [6], who modified the solution provided by [8].
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general alternative to the BFe and BFa linearization
methods. In Tables 4 and 5 we show that, in general,
estimates of performance computed with the proposed
method are preferable to estimates of performance computed
with the BFe or BFa methods. There are some instances in
which the BFe or the BFa methods provide better
performance estimates, but that generally occurs for cases
in which all methods provide excellent agreement with the
real performance of the HB rock mass, often with relative
errors of less than about 1%. However, for cases in which the
error is large enough to be of engineering significance (say,
more than 10%), our results suggest that the linearization
method presented in Section 2 provides better performance
estimates than the BFe or the BFa methods.
For instance, plastic radii computed using our lineari-

zation method tend to underestimate the size of the
plastic zone, with errors in the computed plastic radii of
up to 6.8%; whereas the BFe method also tends to
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Table 4

Differences (expressed as percentage) between performance estimates of radius of the plastic region, critical pressure, and radial convergence computed

using the parameters for the original HB rock mass and the equivalent MC parameters obtained after linearization with several methods

Case c (deg) Mohr–Coulomb rock mass

BFe EMR BFa This work

dre (%) dpe (%) du (%) dre (%) dpe (%) du (%) dre (%) dpe (%) du (%) dre (%) dpe (%) du (%)

1(a) 0 0.75 4.77 0.60 0.05 �0.24 �0.00 �0.36 �12.02 2.13 0.51 6.06 �0.44

1(b) 0 0.21 2.40 �0.20 �0.06 �0.23 �0.24 �1.63 �12.02 �1.37 0.17 2.65 �0.38

1(a) 10 0.75 4.77 0.71 0.05 �0.24 �0.03 �0.36 �12.02 2.50 0.51 6.06 �0.54

1(b) 10 0.21 2.40 �0.22 �0.06 �0.23 �0.27 �1.63 �12.02 �1.67 0.17 2.65 �0.44

1(a) 30 0.75 4.77 1.11 0.05 �0.24 �0.18 �0.36 �12.02 3.75 0.51 6.06 �0.90

1(b) 30 0.21 2.40 �0.31 �0.06 �0.23 �0.42 �1.63 �12.02 �2.88 0.17 2.65 �0.67

2(a) 0 1.28 5.52 1.43 0.07 0.74 0.01 0.05 �7.09 2.83 0.64 6.83 �0.72

2(b) 0 �0.44 3.03 �1.88 �0.75 0.72 �1.84 �2.70 �7.09 �4.06 �0.50 3.59 �2.27

2(a) 10 1.28 5.52 1.71 0.07 0.74 �0.03 0.05 �7.09 3.32 0.64 6.83 �0.87

2(b) 10 �0.44 3.03 �2.15 �0.75 0.72 �2.11 �2.70 �7.09 �4.85 �0.50 3.59 �2.63

3(a) 0 15.30 2.89 26.54 �0.08 �0.06 �0.13 16.12 6.71 24.19 1.70 4.85 �3.27

3(b) 0 0.54 1.23 �0.72 �0.56 �0.05 �1.26 3.51 6.71 �2.00 �0.03 1.42 �2.34

3(a) 10 15.30 2.89 30.68 �0.08 �0.06 �0.85 16.12 6.71 28.35 1.70 4.85 �3.97

3(b) 10 0.54 1.23 �0.85 �0.56 �0.05 �1.61 3.51 6.71 �1.90 �0.03 1.42 �2.78

4(a) 0 0.17 1.94 �0.01 0.10 �0.54 �0.01 �0.34 �17.47 0.21 0.17 1.96 �0.03

4(b) 0 0.02 0.95 0.01 �0.02 �0.50 0.01 �0.54 �17.47 �0.00 0.02 0.92 0.00

4(a) 10 0.17 1.94 �0.02 0.10 �0.54 �0.02 �0.34 �17.47 0.24 0.17 1.96 �0.04

4(b) 10 0.02 0.95 �0.01 �0.02 �0.50 �0.01 �0.54 �17.47 �0.02 0.02 0.92 �0.02

4(a) 30 0.17 1.94 �0.01 0.10 �0.54 �0.01 �0.34 �17.47 0.42 0.17 1.96 �0.04

4(b) 30 0.02 0.95 0.01 �0.02 �0.50 0.01 �0.54 �17.47 �0.02 0.02 0.92 �0.01

5(a) 0 0.91 4.94 0.88 0.02 �0.13 �0.00 �0.35 �10.11 2.14 0.57 6.52 �0.57

5(b) 0 0.24 2.47 0.02 �0.06 �0.12 �0.02 �1.81 �10.11 �1.71 0.21 2.75 �0.17

5(a) 10 0.91 4.94 1.05 0.02 �0.13 �0.03 �0.35 �10.11 2.52 0.57 6.52 �0.69

5(b) 10 0.24 2.47 0.02 �0.06 �0.12 �0.04 �1.81 �10.11 �2.11 0.21 2.75 �0.21

5(a) 30 0.91 4.94 1.61 0.02 �0.13 �0.26 �0.35 �10.11 3.63 0.57 6.52 �1.17

5(b) 30 0.24 2.47 0.04 �0.06 �0.12 �0.10 �1.81 �10.11 �3.71 0.21 2.75 �0.35

6(a) 0 11.84 3.73 21.48 0.06 0.31 0.22 11.90 5.10 20.52 2.16 5.49 �0.43

6(b) 0 1.07 1.80 0.94 0.09 0.21 0.41 0.98 5.10 �3.00 0.80 1.96 0.11

6(a) 10 11.84 3.73 24.83 0.06 0.31 �0.29 11.90 5.10 23.79 2.16 5.49 �0.68

6(b) 10 1.07 1.80 1.07 0.09 0.21 0.35 0.98 5.10 �3.53 0.80 1.96 0.08

7(a) 0 2.98 5.97 5.11 0.03 1.13 0.08 2.33 �2.75 7.50 0.81 7.73 �1.10

7(b) 0 0.48 3.37 �0.06 0.05 1.19 �0.10 �1.93 �2.75 �3.29 0.36 3.57 �0.48

7(a) 10 2.98 5.97 6.03 0.03 1.13 �0.03 2.33 �2.75 8.76 0.81 7.73 �1.36

7(b) 10 0.48 3.37 �0.07 0.05 1.19 �0.12 �1.93 �2.75 �4.03 0.36 3.57 �0.57

8(a) 0 21.32 2.57 36.39 0.01 0.00 0.04 22.49 7.06 33.77 2.87 4.25 �0.99

8(b) 0 1.16 1.13 0.59 �0.13 �0.01 �0.21 6.22 7.06 2.04 0.46 1.24 �1.18

8(a) 10 21.32 2.57 41.74 0.01 0.00 �0.75 22.49 7.06 39.29 2.87 4.25 �1.21

8(b) 10 1.16 1.13 0.70 �0.13 �0.01 �0.40 6.22 7.06 3.10 0.46 1.24 �1.41

9(a) 0 23.19 2.13 40.04 �0.86 �0.58 �1.55 22.69 5.34 36.48 6.81 2.83 9.51

9(b) 0 1.66 0.61 2.08 0.62 �0.53 1.50 4.06 5.34 0.59 1.20 0.65 0.97

9(a) 10 23.19 2.13 45.64 �0.86 �0.58 �2.66 22.69 5.34 42.00 6.81 2.83 11.06

9(b) 10 1.66 0.61 2.39 0.62 �0.53 1.59 4.06 5.34 1.04 1.20 0.65 1.07

Table 5

Number of test cases (out of a total of 42) in which percentage errors in performance estimates exceed values of 5%, 10%, and 20% for different

linearization procedures

Percentage Mohr–Coulomb rock mass

BFe EMR BFa This work

dre (%) dpe (%) du (%) dre (%) dpe (%) du (%) dre (%) dpe (%) du (%) dre (%) dpe (%) du (%)

5 8 4 10 0 0 0 10 38 10 2 12 2

10 8 0 8 0 0 0 8 18 8 0 0 1

20 4 0 8 0 0 0 4 0 8 0 0 0
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underestimate the size of the plastic zone, with errors up to
23% (i.e., more than three times the error of our method).
For the 42 cases considered, our method provides only two
cases with more than 5% error in the estimation of plastic
radius, and zero cases with more than 10% error; whereas
the BFe and BFa provide 8 and 10 cases with more than
5% error; eight cases with more than 10% error and four
cases with more than 20% error.
Table 6

Sum of squares of relative errors of estimates of plastic radius, critical

pressure, and radial convergence when different intermediate cohesion

values are considered in the linearization procedure

x�C
P
ðdreÞ

2 P
ðdpeÞ

2 P
ðduÞ2

0.00 5:43Eþ 01 1:84E� 03 3:66Eþ 03

0.05 2:31Eþ 01 1:51E� 03 7:59Eþ 02

0.10 1:17Eþ 01 2:33E� 03 2:47Eþ 02

0.15 6:45Eþ 00 4:29E� 03 1:00Eþ 02

0.20 3:69Eþ 00 7:40E� 03 4:62Eþ 01

0.25 2:12Eþ 00 1:17E� 02 2:27Eþ 01

0.30 1:20Eþ 00 1:70E� 02 1:14Eþ 01

0.35 6:46E� 01 2:36E� 02 5:74Eþ 00

0.40 3:17E� 01 3:13E� 02 2:76Eþ 00

0.45 1:31E� 01 4:01E� 02 1:20Eþ 00

0.50 3:69E� 02 5:01E� 02 4:29E� 01

0.55 4:38E� 03 6:12E� 02 1:00E� 01

0.60 1:34E� 02 7:35E� 02 2:82E� 02

0.65 5:07E� 02 8:69E� 02 1:06E� 01

0.70 1:07E� 01 1:01E� 01 2:71E� 01

0.75 1:77E� 01 1:17E� 01 4:84E� 01

0.80 2:55E� 01 1:34E� 01 7:22E� 01

0.85 3:39E� 01 1:52E� 01 9:72E� 01

0.90 4:27E� 01 1:71E� 01 1:22Eþ 00

0.95 5:17E� 01 1:91E� 01 1:47Eþ 00

1.00 6:07E� 01 2:13E� 01 1:71Eþ 00

FLAC (Version 5.00)

LEGEND

29-Oct-07  11:18
step      2816
-8.667E+01 <x<  4.667E+01
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User-defined Groups
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EstacDestInf
EstacDestMed
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Fig. 4. Geometry
Our linearization method underestimates radial conver-
gences in some cases and overestimates them in others,
with the largest relative errors (of up to 11%) due to
underestimation. The BFe and BFa methods also present
cases with overestimation and underestimation of con-
vergences, but errors of the BFe and BFa methods are
generally significantly larger than errors of our method.
For instance, the BFe method provides errors of up to 45%
in the estimation of radial convergences, and the BFa
method provides errors of up to 42% (i.e., about four times
the error of the proposed method). Similarly, our method
provides two cases with more than 5% error in the
estimation of radial convergence, one case with more than
10% error, and zero cases with more than 20% error;
whereas both the BFe and BFa methods provide eight
cases with more than 20% error.
The BFe method provides slightly better estimates of the

critical pressure value than our method, which still per-
forms better than the BFa method. For the 42 benchmark
cases, our method provides 12 cases in which the error in
estimation of the critical support pressure lies between 5%
and 10%; whereas the BFe method provides four cases
within that error interval, and the BFa method provides 38
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of the model.

Table 7

Computed equivalent Mohr–Coulomb parameters for design of the tunnel

in two rock masses of different quality

Case GSI sci (MPa) mi HB rock mass MC rock mass

mb s a c (kPa) f (deg)

A 20 5 9.6 0.981 7:30E� 4 0.5 87.3 25.7

B 35 20 10 0.551 1:38E� 4 0.544 111.4 53.2
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cases with more than 5% error and 18 with more than 10%
error. (Based on the above, however, we believe that this is
not a major shortcoming of our method, since it provides
less than 10% error for all cases considered; in addition,
Sofianos and Nomikos [6] developed simple approximated
closed-form expressions to compute the critical pressure in
Fig. 5. Plastified region developed around the tunnel for rock masses of differ

MC strength parameters. (a) Case A; HB rock mass, (b) Case A; MC rock m
HB rock masses that reduce the need to compute critical
pressures using equivalent MC parameters.)
Finally, we present the results of a sensitivity analysis to

assess the value of x�C in Eq. (7) that provides ‘‘optimum’’
performance estimates. To that end, we use the same 42
benchmark test cases employed above (see e.g., Table 4)
ent strength, using the original HB strength parameters and the linearized

ass, (c) Case B; HB rock mass, (d) Case B; MC rock mass.
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Table 8

Computed estimates of tunnel response, for rock masses of different

strength, using the original HB strength criterion and the linearized

MC strength parameters

Case Type dmax (mm) Tmax (kN) Nmax (kN/m) Mmax ðkN �m=mÞ

A HB 12.50 74.80 976 17.85

A MC 12.45 70.18 1001 19.73

B HB 6.05 7.55 324.1 1.03

B MC 6.09 7.33 332.8 1.05

Table 9

Differences (expressed as percentage) between computed estimates of

tunnel response using the original HB strength criterion and the linearized

MC strength parameters

Case ddmax (%) dTmax (%) dNmax (%) dMmax (%)

A �0.40 �6.17 2.56 10.53

B 0.66 �2.91 2.68 1.94
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and, for each value of x�C considered, we compute the sum of
squares of relative errors (as compared to the performance
in the HB rock mass) in estimates of plastic radius, critical
pressure, and radial convergence. The results (see Table 6)
show that values in the range 0:50ox�Co0:70 produce the
linearization results that better reproduce the performance
of tunnels in the original HB rock mass. Results presented
in this paper are computed using x�C ¼ 0:60.

3.3. Numerical analyses of tunnel response

We have further validated the proposed linearization
procedure for tunnelling problems for which analytical
solutions are not available. As illustrated in Fig. 4, we have
considered an example case of a non-circular tunnel (right)
constructed in a fractured rock mass. Such tunnel is to be
constructed adjacent to an underground station (left) that
is constructed before the tunnel. The station is constructed
with the multiple-headings excavation method, whereas the
tunnel is constructed using the full-face excavation method.
The cross section of the tunnel has a maximum width of
13.8m and a maximum height of 9.6m. The tunnel support
system consists of a 10 cm thick shotcrete lining and a series
of 6m long passive rock bolts installed in a 2m� 2m grid.

A soil formation with gsoil ¼ 21:1 kN=m3 unit weight lies
on top of the rock mass where the tunnel is constructed.
(See Fig. 4.) The rock mass is further considered to have
unit weight grock ¼ 26:1 kN=m3, Poisson’s ratio n ¼ 0:3,
and Young’s modulus Erock ¼ 1850MPa. The in situ stress
is non-hydrostatic, with a ratio of horizontal to vertical
stresses of K0 ¼ shsv ¼ 1:5. Under these conditions, we
study the performance of the tunnel described above using
the original HB failure criterion and the linearized
MC criterion for two rock masses with different strength
(but identical stiffness): in Case A we consider one rock
mass with GSI ¼ 20, sci ¼ 5MPa and mi ¼ 9:6; and in
Case B we consider one rock mass with GSI ¼ 35,
sci ¼ 20MPa, and mi ¼ 10:0. To that end, we apply the
linearization procedure presented in Section 2; this allows
us to compute equivalent MC strength parameters that
account for the support pressure exerted by the tunnel
lining in each case. The results of such linearization
procedure are presented in Table 7.

Once the linearization has been completed, we can
compare the computed response of the tunnel considering
the ‘‘original’’ HB rock mass and the ‘‘equivalent’’
MC rock mass. (Computations have been performed using
the explicit finite-difference software FLAC [15].) In that
sense, for instance, Fig. 5 shows the plastified region that is
formed around the tunnel in each case. It can be observed
that, as expected, the plastified region developed around
the tunnel is larger for the tunnel constructed in the
weaker rock mass (Case A, with GSI ¼ 20) than for tunnel
constructed in the stronger rock mass (Case B, GSI ¼ 35).
The results also show that, for a given rock mass, no
significant differences in the shape or extension of the
plastified zone around the tunnel are found when com-
putations are performed using the linearized MC strength
parameters instead of the original HB strength criterion.
We have also computed (and compared) additional

aspects of tunnel response that are commonly employed for
tunnel design, such as displacements around the tunnel and
loads on the tunnel support system. As a summary of such
analyses, Table 8 lists the maximum displacement around
the tunnel in each case (dmax), as well as the maximum load
on the rock bolts (Tmax), and the maximum normal force
(Nmax) and maximum moment (Mmax) acting on the
shotcrete lining. Similarly, Table 9 lists the relative
differences between computed estimates of tunnel perfor-
mance for the rock mass with the original HB strength
criterion and for the rock mass with the equivalent
MC strength criterion.
Results indicate that, as expected, computed displace-

ments around the tunnel and computed loads on the
tunnel support system are larger for weaker rock masses
(i.e., Case A, with GSI ¼ 20) than for stronger rock masses
(i.e., Case B, with GSI ¼ 35). Results also show that the
relative differences between tunnel response computed with
the original HB strength criterion and the linearized
MC criterion are not very significant. In that sense, for
instance, only the computed estimates of maximum moment
for Case A (i.e., with GSI ¼ 20) present a relative error of
slightly more than 10% between the HB predictions and the
MC predictions. In the case of stronger rock masses (i.e.,
Case B, with GSI ¼ 35), results show that the differences in
the predictions of support load between the HB rock mass
and the MC rock mass are, in all cases, below 3%.

4. Conclusions

We present a new method for estimation of ‘‘equivalent’’
MC strength parameters that can be employed for design
of supported tunnels in elasto-plastic rock masses satisfy-
ing the generalized HB failure criterion. The linearization
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is performed using the adimensional formulation of the
HB failure criterion developed by Serrano et al. [13],
in which the HB failure criterion is expressed in terms of
the normalized Lambe’s variables for plane stress. The
transformation proposed will remain valid as long as the
overall form of the HB criterion is maintained, even if the
procedures to compute the parameters of the HB criterion
(i.e., mb, s, and a) change in future versions of the criterion.

The actual stress field in the plastic region around the
tunnel is considered, as it is within such plastic region
where the rock has reached its ultimate strength. Stresses at
the plastic region around the tunnel range from a minimum
stress level at the tunnel lining (where the tunnel support
pressure represents the minor principal stress) to a
maximum stress level at the elasto-plastic interface (where
Lambe’s p variable remains constant and the radial stress
corresponds to the critical pressure).

Results indicate that the actual stress field in the plastic
region around the tunnel (including the influence of tunnel
support pressure) has a significant impact on computed
estimates of equivalent MC strength parameters. The
linearization method employed also affects the results.
For instance, cohesion values computed with our method
tend to be lower than those computed with the BFe and
EMR methods, whereas equivalent friction angles com-
puted with our method tend to be higher than those
computed with the BFe and EMR methods. (Differences
tend to be higher for cases without tunnel support and for
cases with lower GSI values.) Relative differences with
equivalent MC parameters computed using our method
tend to be significantly higher for the BFa method (which
does not consider the actual stress field around the tunnel)
than for the EMR and BFe methods.

Comparisons of performance predictions computed
considering the HB rock mass and considering equivalent
MC parameters for different linearization methods have
shown that the EMR method provides the smallest relative
errors with respect to plastic radius, critical support
pressure, and radial convergence. Therefore, following
Sofianos and Nomikos [6], we recommend the EMR
method to compute equivalent MC strength parameters
when the tunnel support pressure is accurately known.
However, the EMR is know not to perform well when the
estimation of support pressure is poor, as it often happens
in real tunnelling projects. In such cases, Sofianos and
Nomikos [6] recommend to use the BFe or the BFa
methods as an alternative to the EMR method.

In this work we show that our newly introduced
linearization methodology can be employed as an alter-
native to the BFe and BFa methods. We have also
validated our linearization procedure using numerical
analyses of tunnel response in cases for which analytical
solutions are not available. Our results show that our
linearization method provides estimates of performance
that, in general, are preferable in practice to estimates of
performance computed with the BFe or BFa methods. In
addition, our results show that the linearization method is
also adequate to estimate loads and moments on the tunnel
support system. Even though there are some specific cases
in which the BFe or the BFa methods provide better
performance estimates, they generally occur when both
methods provide excellent agreement with the performance
of the HB rock mass and, therefore, when the selection of
one method instead of the other does not provide
significant practical engineering advantages. Our newly
proposed method, however, provides performance esti-
mates that are generally better than performance estimates
computed with the BFe or BFa methods in cases in
which their difference with the performance of the HB rock
mass is of engineering significance (say, more than 10%).
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