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Summary

We study the effects of discontinuity network parameters on the formation of removable wedges
in rock slopes. Discontinuities are simulated using the Poisson disk model, and removable wedges
are identified using block theory. The formation of removable wedges of different sizes is assumed
to follow a Poisson process. Poisson regression and Monte Carlo simulation are then used to
identify statistically relevant parameters of the model, and to study the effects that variations in
their values have on formation of removable blocks. The sensitivity of the results as a function of
the mean orientations of the discontinuity sets forming the blocks is also studied by means of a
parametric study. The volumetric intensity of discontinuities in the rock mass is found to have a
significant impact on the computed estimates of removable block formation. As predicted by
theory, our results indicate that, everything else being equal, the expected rate of formation of
removable wedges is proportional to the square of the intensity measure. Estimates are also
sensitive to changes in discontinuity size, especially in cases in which discontinuities are smaller
than one to two times the height of the slope. The interaction between the mean size of disconti-
nuities and the coefficient of variation of discontinuity sizes is found to be significant as well.
Finally, results of our sensitivity analysis suggest that the orientation of discontinuity sets sig-
nificantly affects the rate of formation of removable blocks in rock slopes.
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1. Introduction

Stochastic discontinuity network models are commonly employed to deal with uncer-

tainties due to the stochastic nature of the geometry of rock masses and the variability

of their mechanical properties (Dershowitz and Einstein, 1988; Lee et al., 1990; Meyer



and Einstein, 2002). Thus, being able to asses the influence that different parameters

of the stochastic network model have on the engineering performance of the project of

interest is a relevant aspect of rock engineering, as it allows one to optimize site

characterization and design procedures, or at least to accomplish this more efficiently

(Starzec and Andersson, 2002a).

In this work we address the problem of formation of removable blocks (i.e., blocks

with kinematical admissibility for displacement toward the excavated free face) in

excavations in ‘‘discontinuous’’ rock masses;1 that is, rock masses intersected by

planes of weakness, so that they are an assemblage of blocks closely fitted into a

three dimensional arrangement (Goodman and Shi, 1985). Removability is a necessary

condition for a block to fail, and keyblocks (i.e., blocks that are potentially critical for

the stability of the excavation) are defined to be finite, removable, and unstable blocks

(Goodman and Shi, 1985). Hence, predictions of the probability of removable block

formation are needed when computing estimates of formation of keyblocks in rock

excavations. To that end, once that removable blocks are identified, stability analyses

may be performed to identify unstable blocks and to provide updated estimates of

formation of keyblocks (see e.g., Dershowitz and Carvalho, 1996; Park and West,

2001; Starzec and Andersson, 2002b; Jimenez-Rodriguez and Sitar, 2003; Jimenez-

Rodriguez, 2004; Park et al., 2005).

In this paper we study what are the main factors that may influence the formation

of removable wedges (and therefore wedge failure). In particular, we study the

effects of discontinuity network parameters on the formation of removable wedges

in rock slopes. To that end, we use Monte Carlo simulation to generate successive

realizations of the discontinuity network in the rock mass. Block theory (Goodman

and Shi, 1985; Goodman, 1995) is then employed to identify removable blocks, and

Poisson regression is used to develop a predictive model of the rate of formation of

removable blocks of different sizes. Finally, we explore the significance that the

governing parameters – or interactions between parameters – of the discontinuity

network model have on the predicted rate of formation of removable blocks, identi-

fying those that are (or are not) statistically relevant in the context of formation of

removable blocks, and studying the effects of discontinuity network parameters on

the formation of removable wedges.

2. Rock Mass Characterization and Slope Model

For the purpose of illustration of the methodology, we use discontinuity data from a

road cut in a serpentine rock mass in southern Spain. The structure of the rock mass is

characterized using discontinuity orientation data obtained by means of compass mea-

surements of discontinuities selected using the scanline sampling method at exposed

rock faces (Priest and Hudson, 1981; Priest, 1993). Scanlines with different orienta-

tions (along a horizontal line within the slope face; along the dip vector of the slope

1 We use the general term discontinuity to refer to any mechanical break in the rock mass ‘‘having zero or
low tensile strength’’ (ISRM, 1978). The term is therefore free from any connotation of geological origin, and
is collectively used to refer to a wide variety of geological features, including weak bedding planes, tension
cracks, joints, weakness zones and faults
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face; and along a horizontal line in a plane approximately perpendicular to the slope

face) are employed to reduce the effects of sampling bias, and five different joint sets

are identified with the aid of program GEOPLOT (Ahlgren, 2000). Figure 1 shows an

equal-angle, lower-hemisphere projection of the normal vectors of each discontinuity

mapped, together with contour lines that represent the estimated frequency of dis-

continuity normals for each direction in space. The mean orientations (in the form of

downward-pointing discontinuity normals and dip vectors; see Priest, 1993) of the five

identified joint sets are listed in Table 1a.

In the analyses below, we consider a slope of height H ¼ 25 m and width

W ¼ 240 m, using the slope model shown in Fig. 2a. The orientations of the planar

surfaces that form the top and face of the slope are listed (in strike-dip notation) in

Table 1b. Joints existing within the rock mass are simulated using the Poisson disk

Fig. 1. Kamb’s contours of lower hemisphere projections of poles of mapped discontinuities

Table 1. Orientations of discontinuity sets and orientation of slope face and top

JS Pole vector Dip vector

Trend [deg] Plunge [deg] Trend [deg] Plunge [deg]

(a) Mean orientations of joint sets considered

1 231 33 051 57
2 103 10 283 80
3 186 11 006 79
4 016 16 196 74
5 285 10 105 80

Strike [deg] Dip [deg]

(b) Orientation of slope face and top
Face N216E 70NW
Top N216E 20NW
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model (Baecher et al., 1977; Dershowitz and Einstein, 1988; La Pointe, 1993). The

Poisson disk model has been found to generate discontinuities that are often similar to

natural discontinuity patterns and, in many cases, it has been recognized that discon-

tinuity networks are best characterized by Poisson models (La Pointe, 1993; Bonnet

et al., 2001). In other cases, however, discontinuity systems in rock masses are better

described by power laws and fractal geometry (Bonnet et al., 2001; La Pointe, 2002),

and fractals have also been widely used to describe the geometry of discontinuities

(see e.g., Barton and Larsen, 1985; Boadu and Long, 1994; Kulatilake et al., 1997;

Odling, 1997; Ehlen, 2000).

Following the Poisson disk model, discontinuity centers are assumed to be uni-

formly located within the generation domain – a rectangular parallelepiped whose

sides are parallel to planes in the generation reference system shown in Fig. 2b. To

reduce edge effects (see e.g., Chan and Goodman, 1987; Chan, 1987), the generation

domain employed in the discontinuity simulation process has height Hg ¼ 400 m,

width Wg ¼ 1000 m, and length Lg ¼ 800 m.

Discontinuities are further assumed to be circular, with their radius following a

lognormal distribution with mean �R and coefficient of variation �R. The volumetric

intensity P32½m2=m3� of generated discontinuities – defined as the ratio between area

of discontinuities and rock volume (Dershowitz and Herda, 1992) – is another param-

eter of the discontinuity network, with discontinuities being generated until a thresh-

old value of P32 is achieved. Finally, orientations of discontinuities in the rock mass

are assumed to follow the Fisher distribution on the sphere, with discontinuity normals

being generated around the mean pole orientation for each joint set in Table 1a, and

with orientation variability defined by the concentration parameter, �. To simulate

orientations from the Fisher distribution, we use the method proposed by Fisher et al.

(1981) as described in Fisher et al. (1987).

It should be clear that modeling assumptions listed above have limitations as

compared to reality and that the influence of the variability of other parameters could

be significant as well. For instance, Starzec and Andersson (2002a) studied the effect

of orientation and termination mode on statistics of formation of keyblocks in under-

ground excavations, concluding that changes in the orientation of discontinuities have

a significant influence on keyblock predictions (in Section 5 we present a parametric

study of the effects of discontinuity orientations on wedge removability), whereas the

effect of changes in the termination fraction (i.e., the number of discontinuities that

Fig. 2. Slope model considered, a) slope geometry; b) reference system for generation of discontinuity
centers
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terminate against other discontinuities over the total number of discontinuities) are not

statistically significant. Therefore, conclusions developed in this study should not be

applied to rock masses with a demonstrably different discontinuity system without due

consideration to the errors that may be introduced.

3. Identification of Removable Wedges

Discontinuities within the rock mass can combine to form blocks of different shapes.

Depending on the orientation of the excavation surface, some of these blocks will have

the capability to move into the excavation – i.e., they are removable blocks. Goodman

and Shi (1985) computed the number of different types of removable blocks that are

theoretically formed by the combination of n joint sets, showing that it increases

rapidly with n. Field studies based on observation of block moulds have shown,

however, that most failed blocks actually belong to a subset of joint set combinations

the failure likelihood of which is higher than the rest (Hatzor, 1992). Methods to

compute the relative block failure likelihood of blocks formed by different joint set

combinations have been proposed (Hatzor, 1993; Hatzor and Feintuch, 2005), and

they can be used in the context of support design for rock excavations (Hatzor and

Goodman, 1993).

These results allow designers to focus their characterization efforts only on joint

sets forming blocks with high likelihood of failure, hence reducing the number of joint

set combinations that need to be analyzed in practice. Visual observation of block

moulds at our site suggested that the most significant joint sets were joint sets 1 and 3,

and they are used for the analysis presented herein. Figure 3 shows examples of

typical wedge moulds observed at the site.

In the context of computer simulations, we compute the intersections (if any) of

each simulated joint with the planes that form the face and top of the slope (see

Table 1b), using the formulation proposed by Chan (1987). Removable wedges in

the excavation can then be identified using discontinuity traces formed by the inter-

Fig. 3. Examples of typical wedge moulds at the site

Influence of Stochastic Discontinuity Network Parameters 567



section of discontinuities with the excavation surface. To that end, we use block theory

techniques (Shi et al., 1985; Shi and Goodman, 1989) on trace maps obtained after

‘‘unrolling’’ the top slope surface toward the slope face, and we follow Shi and

Goodman’s assumption that discontinuities extend far enough into the excavation so

that trace loops obtained on the unrolled trace map delimit actual blocks. In the

process of removable block identification, we take advantage of the peculiarities of

our problem, as follows:

1. We assume that wedges are formed by discontinuities belonging to different joint

sets. This is because discontinuities from the same joint set will form blocks with

almost parallel faces, which are less likely to fail than blocks with faces that are not

as close to being parallel (Hoek and Bray, 1981; Hatzor, 1993). In fact, it is

customary to assume, as Shi and Goodman (1989) do, that blocks with parallel

faces cannot move unless a non-dilatant shear behavior of the parallel faces is

expected – e.g., they are smooth.

2. We only consider traces that intersect the line of intersection between the face

and top of the slope (i.e., the hinge line employed in the ‘‘unrolling’’ operation),

as discontinuity traces are required to intersect such hinge line to form a remo-

vable wedge.

Figure 4 shows an example of traces formed by the intersection of simulated

discontinuities with the excavation surface. In addition, Fig. 4 illustrates the ‘‘unroll-

ing’’ operation of discontinuity traces toward the face of the slope. Ellipses are the

projected view of circular disks representing discontinuities. The disk on the left

represents a discontinuity that does not intersect the excavated slope, whereas the

disk on the right represents a discontinuity that intersects the excavation surface, pro-

ducing two discontinuity traces. One such discontinuity trace (plotted with a discon-

tinuous line) is ‘‘unrolled’’ toward the plane given by the slope face following the path

indicated by the arrows. Similarly, Fig. 5a shows an example of the original (unrolled)

map of all discontinuity traces that intersect the face and top of the slope; Fig. 5b

(obtained after eliminating traces that do not intersect the hinge line between the face

Fig. 4. Example of traces formed by the intersection of a simulated discontinuity with the excavation
surface and graphical representation of the ‘‘unrolling’’ operation. The disk on the left represents a dis-
continuity that does not intersect the excavated slope. The disk on the right represents a discontinuity that
intersects the excavation surface producing two discontinuity traces. The trace plotted with a discontinuous

line is ‘‘unrolled’’ toward the slope face following the path indicated by the arrows
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and top of the slope) shows those traces that may potentially form removable wedges;

and, finally, Fig. 5c shows the removable wedges that were identified using block

theory in that particular case.

Fig. 5. Use of trace maps for the identification of removable blocks. Plots are made for a slope with height
H ¼ 25 m and orientation (in dip direction=dip format) 180=90 for its face and 180=00 for its top. Mean
orientations for the two discontinuity sets considered are 155=40 and 245=40. Other parameters of the

stochastic discontinuity network are �R ¼ 30 m, �R ¼ 0:8, P32 ¼ 0:5 m�1, and � ¼ 200
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It could be argued that, in general, the performance of the excavation will be worse

as the number of removable and unstable blocks increases. However, the total number

of removable blocks is known not to be a good indicator of the expected performance

of an excavation, especially when small blocks that coalesce into larger blocks are not

counted (McCullagh and Lang, 1984; Chan, 1987). This is because the total number of

blocks does not provide information about the relative size of blocks that may even-

tually fail and, accordingly, it provides little information to estimate the consequences

in the event of failure or to compute the necessary support measures. Having taken this

issue into account, we consider wedge size in our analysis (defined as the vertical

height of the wedge) and we record the number of removable wedges whose sizes are

included within different size intervals. (Note that we count all identified removable

blocks, even when such blocks are included within larger blocks or when they are

formed as the intersection of larger blocks; see Fig. 5). As listed in Table 2, the five

size intervals considered in this work range from I1 � ½0;H=5� to I5 � ½4H=5;H�. That

is, for instance, an identified removable wedge is recorded within size interval I5 if the

size of the wedge (i.e., its vertical height) is between 80 and 100% of the vertical

height of the slope, H.

The potential number of removable and unstable blocks can also affect the mode

of failure and the support needs of the excavation (see e.g., Karzulovic, 1988). For

instance, field observations suggest that, as the number of blocks increases, the

performance of the slope changes from structurally controlled rock block failures

to a rubble-like failure mode of superficial small blocks or even to a mass failure

mode similar to that commonly encountered in excavations in granular materials.

However, to establish a relationship between the number of identified removable

blocks within each size interval and the performance of the excavation is a challeng-

ing task beyond the scope of this paper, and we do not further discuss performance

measures herein.

4. Statistical Analysis

Given the Poisson disk model used for generation of discontinuities, the formation of

removable blocks along the excavation is expected to follow a Poisson process as well

(see Ambartzumian et al., 1996, for an analytical derivation of this result). Accord-

ingly, Poisson regression appears as a logical methodology to estimate the rate of

formation of removable wedges of different sizes.

Poisson regression consists in estimating (via maximum likelihood) the depen-

dance of the canonical parameter of the Poisson distribution, �, on the input variables

of the model (see Appendix A for details). The canonical parameter of the Poisson

distribution is related to the rate of formation of removable wedges of different sizes, �.

Table 2. Nomenclature of size intervals considered for the analysis of identified removable
wedges, with their corresponding interval limits

Interval names I1 I2 I3 I4 I5

Size limits ½0;H=5� ½H=5; 2H=5� ½2H=5; 3H=5� ½3H=5; 4H=5� ½4H=5;H�
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Accordingly, once that the maximum likelihood estimates of the canonical parameter

are computed for each size interval considered, �̂�i, we may obtain estimates of the rate

of formation of removable blocks within such size intervals, �̂�i. That is, as shown in

Appendix A, we obtain �̂�i as �̂�ið�Þ ¼ exp�̂�ið�Þ, with i ¼ 1; . . . ; 5.

4.1 Experimental Design and Regression Model

We consider four explanatory variables (i.e., factors) in the regression analysis, cor-

responding to rock discontinuity network parameters �R, �R, P32, and �. (As indicated

in Section 2, �R is the mean radius of disks representing discontinuities, �R is the

coefficient of variation of their radius, P32 is the intensity of discontinuities, and � is

the Fisher constant representing variability of discontinuity orientations around the

mean orientation of the discontinuity set.) For each factor, we consider the values (i.e.,

levels) presented in Table 3. (Note that there are empty cells in Table 3 because a

different number of levels is considered for each factor.)

A complete factorial design is employed, in which all combinations of factors and

levels are considered, with a total of d ¼ 62 � 42 ¼ 576 design points. (For the sake of

simplicity, we assume that �R, �R, P32, and � are identical for both discontinuity sets in

each design considered.) In addition, a series of twenty Monte Carlo simulations are

performed for each design considered. In each case, a three dimensional discontinuity

network is generated with the model presented in Section 2. For each generated

network, traces produced by the intersection of discontinuities with the excavation

surface are obtained; such traces are then employed (after performing the ‘‘unrolling’’

operation discussed in Section 3) to identify removable blocks of different sizes.

Accordingly, the total experiment consists of 576 � 20 ¼ 11; 520 repetitions of the

problem of generation of discontinuities and identification of removable wedges.

The following transformation of variables is performed for mathematical conve-

nience prior to the regression analysis: x1 ¼ logð�R=1:5HÞ, x2 ¼ logð�R=0:7Þ, x3 ¼
logðP32=1:5Þ, and x4 ¼ logð�=80Þ. Accordingly, the vector of explanatory variables in

the regression model is given by x2X, where x represents the transformed parameter

values of the discontinuity network model (i.e., x�fx1; x2; x3; x4g), and X indicates

the design set in the Monte Carlo simulations performed (see Table 3).

In the analyses below, we focus on the formation of medium and large-sized

removable blocks (i.e., within intervals I3 � ½2H=5; 3H=5� and I5 � ½4H=5;H�). As

explained in Appendix A, in both cases we consider an initial cubic model with a

linear intercept, and statistically non-significant terms are eliminated iteratively in

Table 3. Factors and levels considered in the Poisson regression analysis

Factor Levels

�3 �2 �1 1 2 3

�R=H 1=3 2=3 1.0 1.5 2:0 4:0
�R 0.10 0.30 0.70 1:0
P32 ½m�1� 0.4 0.7 1.0 1.5 3:0 5:0
� 10.0 30.0 80.0 200:0
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a hierarchical manner considering a test of size � ¼ 0:05. Results presented in

this section are computed using the R environment for statistical computing (R

Development Core Team, 2004).

4.2 Formation of Medium and Large-Sized Removable Blocks

Table 4 lists the computed maximum likelihood estimates of terms found to be

statistically relevant in the cubic regression model considered for predicting the for-

mation of medium-sized (i.e., within size interval I3 � ½2H=5; 3H=5�) and large-sized

(i.e., within size interval I5 � ½4H=5;H�) removable wedges.

Similarly, Figs. 6 and 7 present the rates of formation of medium and large-

sized removable blocks that are predicted with the model.2 Points in Figs. 6

Table 4. Maximum likelihood estimates of the coefficients of the medium-size and large-size removable
blocks regression model

Term Medium-sized Large-sized

Estimate Std. error P-value Estimate Std. error P-value

(Intercept) �0.4356846 0.0025447 <2e-16 �1.022112 0.003425 <2e-16
x1 0.5584750 0.0032470 <2e-16 1.212338 0.005182 <2e-16
x2 0.2708231 0.0030892 <2e-16 0.777367 0.003884 <2e-16
x3 1.9831220 0.0033840 <2e-16 1.982431 0.004434 <2e-16
x4 0.0566357 0.0014392 <2e-16 0.154628 0.001932 <2e-16
x2

1 �0.4788736 0.0029703 <2e-16 �0.763702 0.004697 <2e-16
x2

2 �0.2539097 0.0057563 <2e-16 �0.324752 0.007761 <2e-16
x2

3 0.0032999 0.0028752 0.25109 -0.012298 0.003738 0.00100
x2

4 �0.0547446 0.0015669 <2e-16 �0.072206 0.002143 <2e-16
x3

1 0.0968685 0.0019760 <2e-16 0.068759 0.003419 <2e-16
x3

2 �0.1519567 0.0024689 <2e-16 �0.232509 0.003420 <2e-16
x3

3 0.0077312 0.0026140 0.00310 0.014902 0.003614 3.73e-05
x3

4 0.0206861 0.0008538 <2e-16 0.012439 0.001181 <2e-16
x1x2 �1.0881560 0.0040419 <2e-16 �1.877237 0.006506 <2e-16
x1x3 0.0010028 0.0021736 0.64456 �0.001016 0.003457 0.76887
x1x4 �0.0944563 0.0013864 <2e-16 �0.095362 0.002030 <2e-16
x2x3 �0.0048953 0.0025603 0.05588 – – –
x2x4 �0.0909339 0.0019126 <2e-16 �0.098851 0.002768 <2e-16
x2x

2
1 0.2379372 0.0019815 <2e-16 0.577149 0.004993 <2e-16

x3x
2
1 0.0053741 0.0027229 0.04842 0.014100 0.004394 0.00133

x4x
2
1 0.0112822 0.0012313 <2e-16 – – –

x1x
2
2 �0.3181284 0.0019425 <2e-16 �0.408644 0.003328 <2e-16

x4x
2
2 �0.0239558 0.0010458 <2e-16 �0.020387 0.001522 <2e-16

x2x
2
3 0.0090602 0.0021670 2.90e-05 – – –

x1x
2
4 �0.0064471 0.0009707 3.09e-11 �0.020250 0.001494 <2e-16

x2x
2
4 �0.0055073 0.0007060 6.17e-15 �0.015616 0.001041 <2e-16

x1x2x3 0.0082710 0.0026439 0.00176 0.012151 0.003047 6.68e-05
x1x2x4 0.0287085 0.0012048 <2e-16 0.026194 0.001925 <2e-16

2 In Fig. 6 we emphasize the dependance of �̂�3 to changes in the mean size of discontinuities (as indicated
by �R=H), whereas in Fig. 7 we emphasize the dependance of �̂�5 to changes in the intensity parameter, P32.
When �̂�5 is plotted against discontinuity mean size and �̂�3 is plotted against intensity, the overall shape of the
model prediction curves is similar to the shape of curves in Figs. 6 and 7 and, in the interest of brevity, they are
not reproduced herein (see e.g., Jimenez-Rodriguez and Sitar, 2005)
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and 7 indicate experimental data. That is, they indicate the mean rates of forma-

tion of removable wedges computed using the Monte Carlo simulations performed.

Similarly, lines in Figs. 6 and 7 indicate predictions of the regression model.

That is, given a set of values of the input parameters of the stochastic dis-

continuity network model, x�fx1; x2; x3; x4g, the lines indicate the mean rates

of formation of removable wedges predicted by the model, as computed by

�̂�iðxÞ ¼ exp�̂�iðxÞ.

Fig. 6. Predicted rates of formation of medium-sized removable blocks as a function of the mean dis-
continuity radius, for different values of P32, �R, and �
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4.3 Discussion

Results show that, as expected in the context of the example case presented herein, the

expected rate of formation of large removable blocks is somewhat smaller than the

rate of formation of medium-sized blocks. This is mainly because, for discontinuities

of a given size within the range considered herein (i.e., ‘‘not much larger’’ than the

Fig. 7. Predicted rates of formation of large-sized removable blocks as a function of the intensity measure,
for different values of �R=H, �R and �
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slope size), a wider range of discontinuity locations will produce shorter traces yield-

ing smaller blocks, as compared with the more restricted range of discontinuity loca-

tions that will yield longer traces and, therefore, larger blocks. Another reason is that

large wedges can only be produced by the intersection of a fraction of the total sample

of generated discontinuities; that is, small discontinuities cannot produce large wedges.

The effects of changes in the intensity of discontinuities can also be inferred from

the computed simulations. Figures 6 and 7 show that increasing the volumetric inten-

sity, P32, significantly increases the rate of formation of medium and large-sized

removable blocks (�̂�3 and �̂�5, respectively). In addition, our results show that these

effects are independent of the value of the remaining input parameters (i.e., disconti-

nuity sizes and variability of orientations) of the stochastic discontinuity network

model. That is, interactions between intensity of discontinuities and other input param-

eters of the model are not significant in this particular case (e.g., see the low values of

coefficients representing interaction between x3 and other terms in Table 4).

Furthermore, our computed results of dependance of removable wedge formation

on P32 agree well with the theoretical predictions. (Remember that the same value of

P32 has been considered for both discontinuity sets.) In particular, if we consider the

main effect of P32 only (see Table 4), the computed coefficient �̂�x3
� 1:98 indicates

that, everything else being equal, the expected rate of formation of medium and large-

sized removable wedges is proportional to ðP32Þ1:98
. Similarly, Mauldon (1992, 1994)

(see also Hatzor and Feintuch, 2005) showed that, everything else being equal,

increasing P32 of one set by a factor of K increases the probability of discontinuity

intersections by the same factor, and increasing P32 of the other set by a factor of K

increases it again by the same factor, therefore increasing the original intersection

probability by a factor of K2. Since joint intersection probabilities are related to

probabilities of occurrence of rock blocks (Mauldon, 1994), the rate of formation of

removable blocks within a given size interval is also increased by such factor. That is,

the rate of formation of removable wedges is also proportional to ðP32Þ2
, as our

simulations indicate. Despite its importance, however, the intensity of discontinuities

cannot be directly measured in general and it needs to be estimated using stereological

principles and observations from area and line samples (Mauldon, 1994; see also

Zhang and Einstein, 2000).

The mean size of discontinuities also affects the predictions of the model. This

observation is to be expected since, as discussed above, the size of a wedge is bounded

by the size of the smallest discontinuity forming the block. In this particular case, it is

observed that the rate of formation of medium and large-sized removable blocks is

particularly sensitive to changes in the size of discontinuities when discontinuities are

smaller than approximately one to two times the height of the slope (i.e., �R=H< 2).

Conversely, predictions of formation of removable blocks are found to be less sensi-

tive to changes in �R when larger discontinuities (i.e., with �R=H � 2) are considered.

(Note that curves plateau for high values of �R=H in Fig. 6.) In both cases, the

sensitivity to changes in the normalized mean size of discontinuities, �R=H, is

observed to depend on the variability of discontinuity sizes, as indicated by �R. In

summary, the influence of the mean size of discontinuities on the formation of remo-

vable wedges depends on the variability of their sizes. (In statistical terminology, there

is an interaction between �R=H and �R.) Such observation is further supported by the
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high values of estimates for the coefficients of x1x2, x1x
2
2, and x2

1x2 terms in Table 4.

Information about the effects that interaction between input variables of the model

have on the formation of removable wedges is not usually found in the literature on this

topic, and it is an advantage of the proposed methodology (Starzec and Andersson,

2002a).

The results also show that increasing the concentration of discontinuity orienta-

tions toward the mean direction of each joint set has the effect of increasing the rate

of formation of medium and large-sized removable wedges. In particular, when the

variability of orientations is ‘‘high’’ (i.e., for ‘‘low’’ values of the concentration param-

eter, �< 30), the predicted rates of formation of removable blocks are found to be

significantly lower than in cases of ‘‘low’’ joint orientation variability (i.e., for ‘‘high’’

values of concentration parameter, with �> 30). This observation, however, is not

general and depends on the specific orientation of the discontinuity sets considered.

For instance, given the requirement that two discontinuities must intersect to form a

wedge, their highest probability of intersection occurs when the two sets have fixed

orientations and they are perpendicular to each other (Mauldon, 1992, 1994; Hatzor

and Feintuch, 2005). In that case, any variability in orientation will produce fewer

intersections, since most pairs of generated discontinuities will not be orthogonal and

will therefore have a reduced probability of intersection. On the other hand, if dis-

continuity sets are approximately parallel, then having variable orientation of the two

sets will in general increase their probability of intersection and, therefore, the prob-

ability of removable wedge formation.

5. Effects of Mean Orientations of Discontinuities on Wedge Removability

In this section we perform a parametric study of the sensitivity of the results of re-

movable wedge formation as a function of the mean orientations of the discontinuity

sets forming the wedge. Such an analysis is performed to assess the influence of

changes in the mean orientation of discontinuity sets on the formation of removable

blocks of different sizes. To standardize the analysis, we consider a vertical slope face

with E–W direction and a horizontal slope top. Similarly, we consider two disconti-

nuity sets that intersect forming removable wedges within the slope. The orientations

of such discontinuity sets are listed in Table 5. Empty cells appear in Table 5 because,

for each discontinuity set, we have considered a different number of dip direction

values (three) and dip values (two).

Table 5. Orientations of discontinuity sets considered in the analysis of
sensitivity to mean orientation (� indicates dip direction values and �

indicates dip values)

Orientation Levels

�1 0 1

�1 115 135 155
�1 40 70
�2 205 225 245
�2 40 70
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The different levels of discontinuity orientations (and their corresponding values)

are combined into thirty-six cases. (The legend to denote the combinations of orienta-

tions that correspond to each case is presented in Table 6.) The height and width of the

slope are considered identical as in the simulations discussed in Section 4, with values

of H ¼ 25 m and W ¼ 240 m. The remaining stochastic discontinuity network param-

eters considered during generation of discontinuities are �R ¼ 1:4H, �R ¼ 0:4,

P32 ¼ 1:2 m�1, and � ¼ 200. A series of ten Monte Carlo simulations are performed

for each case listed in Table 6.

The numbers of identified removable wedges (after ten Monte Carlo simulations)

within each size interval are listed in Table 7. The results corresponding to medium

and large-sized removable wedges are also plotted in Fig. 8, and they indicate that the

relative orientation of discontinuity sets has a significant influence on the number of

Table 6. Combinations of orientations of discontinuity sets
considered in the analysis of sensitivity to mean orientation

Case Levels

�1 �1 �2 �2

1 �1 �1 �1 �1
2 �1 �1 �1 1
3 �1 �1 0 �1
4 �1 �1 0 1
5 �1 �1 1 �1
6 �1 �1 1 1
7 �1 1 �1 �1
8 �1 1 �1 1
9 �1 1 0 �1

10 �1 1 0 1
11 �1 1 1 �1
12 �1 1 1 1
13 0 �1 �1 �1
14 0 �1 �1 1
15 0 �1 0 �1
16 0 �1 0 1
17 0 �1 1 �1
18 0 �1 1 1
19 0 1 �1 �1
20 0 1 �1 1
21 0 1 0 �1
22 0 1 0 1
23 0 1 1 �1
24 0 1 1 1
25 1 �1 �1 �1
26 1 �1 �1 1
27 1 �1 0 �1
28 1 �1 0 1
29 1 �1 1 �1
30 1 �1 1 1
31 1 1 �1 �1
32 1 1 �1 1
33 1 1 0 �1
34 1 1 0 1
35 1 1 1 �1
36 1 1 1 1
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identified removable wedges. Starzec and Andersson (2002a) obtained similar results

and they also indicated that discontinuity orientation is a significant parameter influ-

encing the formation of keyblocks. Similarly, the geometry of blocks has been identi-

fied as one key factor affecting the reliability of rock slopes with respect to stability

considerations (see e.g., Jimenez-Rodriguez et al., 2006).

The results also show that the dip of the discontinuity sets appears as the most

important factor affecting the formation of large removable wedges. Specifically, cases

in which both discontinuity sets have high dip values (i.e., �1 ¼ 70 and �2 ¼ 70;

corresponding to cases 8, 10, 12, 20, 22, 24, 32, 34, and 36) present the highest rate

of formation of large-sized removable wedges whereas cases in which both disconti-

nuity sets have low dip values (i.e., cases 1, 3, 5, 13, 15, 17, 25, 27, and 29) present the

Table 7. Number of identified removable wedges for different combinations of
orientations of the discontinuity sets forming the wedge (after ten Monte Carlo

simulations; H ¼ 25 m, �R ¼ 1:4H, �R ¼ 0:4, P32 ¼ 1:2 m�1, and � ¼ 200)

Case Size interval

I1 I2 I3 I4 I5

1 7607 2950 840 110 7
2 6396 3702 1918 899 300
3 9002 3733 1156 230 19
4 10226 5767 3073 1315 439
5 10264 3989 1000 151 9
6 11133 5850 2515 961 206
7 8996 3975 1435 417 67
8 5770 4045 2761 1775 1113
9 10201 5434 2629 1115 370

10 7535 5423 3826 2538 1532
11 11046 5688 2568 916 245
12 8448 5711 3772 2332 1357
13 5893 2128 609 101 7
14 6295 3544 1936 889 323
15 8440 3531 1268 357 50
16 9593 5560 2828 1255 485
17 10101 4153 1426 266 22
18 11308 6277 3139 1253 348
19 7419 3524 1514 518 117
20 5643 3962 2635 1705 1113
21 8649 4908 2671 1159 422
22 6426 4654 3196 2010 1306
23 9854 5665 2961 1380 461
24 7322 5336 3597 2423 1445
25 4809 1667 374 53 0
26 4783 2104 865 225 49
27 7031 2648 663 88 19
28 7670 3479 1301 364 91
29 7445 2653 663 105 4
30 9757 4578 1691 466 85
31 5196 2266 938 231 59
32 3498 2391 1590 1008 468
33 6533 3604 1793 807 278
34 5346 3672 2494 1537 893
35 6359 3856 2118 981 339
36 6452 4523 2917 1810 1084
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lowest rate of formation of such wedges. (A similar observation can also be made for

the case of medium-sized wedges, even though the effect is less significant than in the

case of large-sized wedges.) The effect of ‘‘aperture‘‘ of the wedge (defined as the

difference between the strikes of the discontinuity sets forming the wedge) is not,

however, observed to be as important. In this sense, our results suggest that, in the

context of formation of medium and large-sized ‘‘centered’’ removable wedges (i.e.,

they have dip directions symmetrical with respect to the dip direction of the slope),

wedges with ‘‘medium’’ aperture (i.e., cases 15, 16, 21, and 22) tend to be slightly

more likely than wedges with ‘‘high’’ aperture (i.e., cases 5, 6, 11, and 12). (Note that

cases 22 and 12, however, seem to contradict this trend.) Similarly, wedges with

‘‘high’’ aperture are found to be somewhat more likely than wedges with ‘‘low’’

aperture (i.e., cases 25, 26, 31, and 32). The ‘‘obliquity’’ of the wedges with respect

to the slope face is also found to affect the number of identified medium and large-

sized removable blocks. In that sense, our results suggest that ‘‘centered’’ removable

wedges (see e.g., cases 15, 16, 21, and 22) are slightly more likely than ‘‘slanted’’

Fig. 8. Number of identified medium and large-sized removable wedges for different combinations of
orientations of the discontinuity sets forming the wedge (after ten Monte Carlo simulations; H ¼ 25 m,

�R ¼ 1:4H, �R ¼ 0:4, P32 ¼ 1:2 m�1, and � ¼ 200)
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wedges of the same aperture (cases 1, 2, 7, 8, 29, 30, 35, and 36). The influence of the

‘‘obliquity’’ of the wedges on their likelihood of formation, however, is also observed

to be significantly smaller than the influence of the dip of the discontinuity sets.

6. Conclusions

We study the problem of evaluating the probability of formation of removable wedges

in rock slopes. The Poisson disk model is used to generate (using Monte Carlo

simulation) an extensive dataset of realizations of discontinuity networks. Traces

formed by the intersection of discontinuities with the excavation surface are then used

to identify removable wedges by means of block theory techniques. The formation of

removable wedges is modeled as a Poisson process, and Poisson regression is used to

develop a predictive model of the expected number of removable wedges of different

sizes to be formed in the excavation.

In the context of the results presented in this work, we show that, as expected, the

rate of formation of large-size removable blocks is significantly smaller than for

medium-size blocks, and we also show that the overall trends of the predicted model

responses are similar in both cases. In addition, we assess the influence that different

parameters of the stochastic discontinuity network have on the estimated rate of

formation of removable blocks. In particular, we show that:

� The volumetric intensity (P32) of discontinuities in the rock mass has a significant

impact on the estimates of removable block formation. As supported by theoretical

considerations, our results suggest that, everything being equal, the expected rate of

formation of removable wedges is proportional to the square of the intensity mea-

sure. In addition, interactions between intensity of discontinuities and other param-

eters of the discontinuity network model are not found to be relevant.

� The predictions of removable block formation are shown to be more sensitive to

changes in the mean discontinuity radius, �R, when �R is ‘‘small’’ with respect to

the height of the slope. Predictions of formation of removable blocks are also found

to be less sensitive to changes in �R when larger discontinuities are considered. In

addition, the influence of the mean size of discontinuities on the formation of

removable blocks depends on the variability of their sizes. That is, in statistical

terms, there is an interaction effect between the mean of the discontinuity radius

distribution, �R, and its coefficient of variation, �R.

� The variability of discontinuity orientations with respect to the mean orientation of

the joint set is found to have an influence on the formation of removable rock

wedges. This observation, however, is not general and depends on the specific

orientations of the discontinuity sets considered.

Furthermore, we show that variations of the mean orientation of discontinuity sets can

have a significant influence on the number of identified removable wedges. The results

also show that the dip of discontinuity sets appears as the main factor affecting the

formation of removable wedges and, in particular, large removable wedges.

We can use these observations to make decisions for site characterization and

engineering design in the context of the problem of keyblock formation. Given the

significant influence that the intensity of discontinuities, P32, has on the rate of for-
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mation of removable blocks, we suggest that the adequate estimation of P32 should be

a priority during site characterization for rock engineering. Despite its importance,

however, the intensity of discontinuities cannot be directly measured and it needs to be

inferred using stereological approaches.

The influence of the size of discontinuities within the rock mass is observed to

depend on the relative size of discontinuities with respect to the excavation dimen-

sions. In that sense, we should try to assure an accurate estimation of discontinuity

sizes when discontinuities in the rock mass are smaller than approximately one to two

times the slope dimensions; in case of larger discontinuities, however, our results

suggest that an approximate estimation of discontinuity sizes could be acceptable,

as the engineering consequences of such uncertainty do not appear significant.

Finally, results of our sensitivity analysis have shown that the adequate identifica-

tion of discontinuity sets and characterization of their orientation should also be a

priority during site characterization, as they have been found to significantly affect the

formation of removable blocks.
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A. Poisson Regression

The Poisson distribution is an example of distributions included within the one-param-

eter exponential family of statistical distributions. Within that context, the probability

function of the Poisson distribution can be written as (Stone, 1996):

f ðy; n; �Þ ¼ e�y�nCð�Þrðy; nÞ; y2Yn ð1Þ
where Yn ¼ f0; 1; 2; . . .g represents the possible outcomes of the number of identified

removable wedges and n can be viewed as ‘‘units of exposure’’ relative to which the

rate of the Poisson process is expressed (Dobson, 1990) – for instance, it corresponds

to the lateral extension of the slope considered in the problem of removable block

formation that we study herein. Additionally, the canonical parameter of the Poisson

distribution, �, is related to the rate of the Poisson process, �, by the expression

� ¼ log�. We also have that Cð�Þ ¼ e� and rðy; nÞ ¼ ny=y!. It may be further observed

that � ranges over ð�1;þ1Þ as � ranges over ð0;þ1Þ.
To perform the regression analysis, following Stone (1996), we denote �ð�Þ as

the rate function and �ð�Þ as the canonical function. Therefore, the dependance of �
on the explanatory variables x2X is given by �ðxÞ, and the dependence of � on

x2X is given by �ðxÞ, with X being the design set considered for the explanatory

variables. It is generally preferred to perform the regression analysis over the cano-

nical function rather than over the rate function, and this is the approach that we use in

this work. To that end, it is assumed that �ð�Þ belongs to an identifiable p-dimensional

linear space G, with functions fg1; . . . ; gpg forming a basis of G. Then, �ð�Þ2G

may be expressed as a unique linear combination of the functions in the basis,

in the form �ð�Þ ¼ �1g1 þ � � � þ �pgp, and the rate function may be obtained by

�ð�Þ ¼ expð�1g1 þ � � � þ �pgpÞ.
The problem of performing Poisson regression consists of finding the maximum

likelihood estimators of the �i coefficients, that will be referred to as �̂�i, with

i ¼ 1; . . . ; p. Such values provide the model estimate that maximizes the likelihood

of observing the available data under the assumption that �ð�Þ 2G.

In both regression analyses presented in this work we consider an initial cubic

regression model. That is, the regression function �ð�Þ is initially assumed to be

included in a space, G, formed by the span of functions that are powers of up to order

three of the transformed explanatory variables (i.e., terms such as xi, x
2
i , and x3

i ) and

their interactions, also up to power three (i.e., terms such as xixj, x
2
i xj, xixjxk, etc.). A

linear intercept (i.e., a constant term) is also included, which makes the total dimen-

sion of the regression model to be p ¼ 35. The p ¼ 35 dimension of the regression
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space is divided as follows: one constant for the linear intercept, twelve main factor

terms (i.e., four terms of type xi, four of type x2
i , and four of type x3

i ), six interac-

tion terms of type xixj, twelve interaction terms of type xix
2
j , and, finally, four inter-

action terms of type xixjxk.

The discussion above indicates that there are thirty-five regression coefficients, �i,

that need to be estimated to solve the regression problem. Explicit expressions to

compute the maximum likelihood estimates of such coefficients, �̂�i, are not usually

available, and they need to be calculated iteratively. The iterative (re)weighted least-

squares algorithm is commonly used for such tasks, involving the iterative solution of

a series of linear systems, with the system coefficients changing from iteration to

iteration (McCullagh and Nelder, 1989; Stone 1996; Venables and Ripley, 2002).

To perform model selection, statistically non-significant terms are eliminated

iteratively in a hierarchical manner. That is, a term is removed only if no statistical

evidence is found to reject the hypothesis that �i ¼ 0 and if the model includes no

other terms which depend on higher order powers of variables included in such a term

(e.g., the term xixj cannot be eliminated if xix
2
j is still included in the model). To test

the hypothesis that �i ¼ 0, we use the P-value of the test with the usual statistical

interpretation; i.e., for the test of size � (the size of the test indicates the probability of

erroneously rejecting a valid hypothesis) the hypothesis is rejected if � is greater or

equal than the P-value, and it is not rejected if � is less than the P-value (Stone, 1996).

Finally, once that the statistically significant terms of the canonical function

have been identified and the maximum likelihood estimates of their coefficients have

been computed, we may use the relationship between the canonical function and

the rate function of the Poisson distribution to obtain estimates of the rate of formation

of removable blocks within each size interval considered, �̂�i. That is, given that

�i ¼ log�i, we obtain �̂�i as �̂�ið�Þ ¼ exp�̂�ið�Þ, with i ¼ 1; . . . ; 5.
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