PATAM Protocol Stack:

IPv6 over ATM with RSVP support for Windows NT

March 29th, 2000

Developed by:

	DIT-UPM

Telematics Engineering Department

Technical University of Madrid

http://www.dit.upm.es

	IT-UC3M

Area of Telematics Engineering

Carlos III University of Madrid

http://www.it.uc3m.es

Abstract
This document describes PATAM Protocol Stack developped and integrated by DIT-UPM and IT-UC3M as part of their contibution to Broadband Trial Integration (BTI) ACTS project. It has been extracted from one of BTI final deliverables: DEL301, “Conclusions from Evaluation of all Applications running on the Network”. For more informaction about it, you can contact us by mail to bti@dit.upm.es or have a look at our web pages at www.dit.upm.es/bti.

1. Description

Due to the unavailability, either in the market or in the research area, of a protocol stack solution including all the functionally required for the BTI project, UPM effort in WG3 was reallocated to develop an integrated protocol stack named PATAM (IPv6 over ATm Adaptation Module with RSVP support). PATAM is a Winsock2 compatible protocol stack running on Windows NT, the operating system chosen by BTI application developers and trial organisations.

PATAM includes an IPv6 stack able to run over Ethernet and ATM networks with multicast support, and an RSVP over IPv6 implementation with traffic control support over ATM interfaces. Access to all PATAM services is made through standard winsock2 programming interfaces.

In particular, PATAM implements IPv6 over ATM support according to [RFC2491] ("IPv6 over NBMA networks") and [RFC 2492] ("IPv6 over ATM networks"), including IPv6 multicast support by means of MARS client functionality according to RFC2022] ("Support for Multicast over ATM networks"). It is based on a modified version of Microsoft Research's IPv6 implementation for Windows NT [MSRIPv6] (which only supports Ethernet interfaces) with the addition of a completely new IPv6 over ATM driver developed by UPM. MARS client functionality has been based on NIST's MARS implementation [MARS-NIST] for LINUX operating system.

[image: image2.wmf]RSVP

daemon

(

rsvpd

)

RSVP API

library

QoS aware Applications

Traffic

Control

in

ATM module

MSR-IPv6

Winsock2

Internal message

based

 API

Adaptation

module

Figure 4: RSVP Architecture in PATAM

PATAM includes also RSVP for IPv6 over ATM support according to IETF Internet Integrated Services model described in [RFC2205] [RFC2210], [RFC2379], [RFC2380], [RFC2381] and [RFC 2382]. It is based on the well-known ISI's RSVP implementation for UNIX operating system [RSVPD], which has been migrated to Windows NT and adapted to offer a winsock2 interface and interact with MSR's IPv6 stack.

The whole stack integrates under the Winsock2 based networking architecture of Windows NT. QoS aware applications use the standard API [WS2-API][WS2-Annex] to access either IPv6 or RSVP services offered by the stack. Figure 1 depicts the general architecture of PATAM integrated stack. The next subsections describe with more detail the two main parts of the protocol stack: the IPv6 over ATM driver (PATAM) and the RSVP protocol daemon.

2. IPv6 over ATM driver

Figure 2 shows the detailed architecture of the IPv6 over ATM driver, including its relation with other modules of the integrated stack. PATAM is a user-mode multithreaded driver that implements all the necessary functions to carry IPv6 packets over ATM networks using dynamic circuits (SVCs) and with full multicast support. The driver is made of several components:

[image: image1.wmf]IPv6 Access (IPAM)

ATM Access Module (ATAM)

Packet Forwarding

Traffic

Control

Module

MARS

Client

PATAM

PATAM

FORE ATM SP

MSR IPv6

 Stack

RSVP

daemon

Flows

Flows

Database

Database

Classifier

Scheduler

Receiver

Figure 2: IPv6 over ATM driver Architecture
· Flows Database. This module manages all the information about the Best Effort (BE) and Controled Load (CL) IPv6 flows maintained by the driver. Each time a new IP flow is created, either unicast or multicast; BE or CL, a new entry in the Flows Database is created, storing all the information necessary to classify and schedule the sending of packets belonging to that flow.

· IPv6 Access Module (IPAM). This module manages the communications with the IPv6 stack. Each time an IPv6 packet is received through any of the ATM circuits, IPAM passes it to the IPv6 stack; and each time the IPv6 stack has a packet directed to the ATM interface, it is received by IPAM, that delivers it to the classifier and scheduler modules.

[image: image3.wmf]RSVP

daemon

ATM TC

Stub

Core RSVP Processing

Internal TC

interfaces

PATAM

TC

module

Dummy

TC

UDP/IPv4

LLDAL

interface

LLDAL

Eth

LLDAL ATM

(

Open/

close

circuits/

leafs

)

One of the most important design decisions was to develop PATAM as a user-mode driver, that is, a driver running outside the kernel of the operating system. That decision was taken due to the fact that the development of a real kernel-mode driver is an extremely difficult and time-consuming task that was out of the scope of the project.

In order to communicate the IPv6 stack (which is a kernel-mode device driver) with PATAM, a proxy-driver [Gallen97] was used. Figure 3 shows the detailed architecture used in IPAM module.

The IPv6 stack was modified to include a new module (atm.c) that emulates an ATM interface. When the IPv6 stack sends a packet through this ATM interface, a call is made to the proxy driver, which redirects the packet out of the kernel to PATAM driver. In the same way, when an IP packet arrives to PATAM through an ATM circuit, an internal event is signalled, making the ATM module to take the packet form PATAM by means of a call through the proxy driver.

· Packet Forwarding Module. This module is in charge of sending and receiving IPv6 packets to and from ATM network. It includes all the functions needed to classify IPv6 packets according to the different flows in the database and schedule their transmission.

· ATM Access Module (ATAM). This module manages the ATM circuits associated with IPv6 flows. It is in charge of creating and releasing SVCs, adding or deleting leafs to multipoint circuits and, in general, reporting other modules about any event related to ATM circuits. It accesses ATM network services using the standard winsock2 API defined in [WS2-Annex] for ATM. This interface allows the creation of UBR and CBR point-to-point and multipoint circuits. By now, no support for ABR is available.

PATAM has been tested with ForerunnerLE ATM cards. As it uses a standard API to access ATM services, there should be no problem using it with other ATM cards. However, during the development and testing of PATAM over different ATM networks, a lot of interoperability problems were detected and reported, some of them due to bugs or oddities in NIC drivers and some other due to incompatibilities between switches and cards. Due to these problems, the tuning of ATM parameters used in this module has required a big effort.

· MARS Client Module. It implements MARS Client functionality according to [RFC 2022]. All requests to send and receive to or from IPv6 multicast addresses and all the communications with the MARS server of the IP LIS are managed by this module. As mentioned, this module was developed starting from a public LINUX implementation [MARS-NIST] of a MARS client for IPv6. This implementation was modified to support IPv6 and later migrated to Windows NT and adapted to work over PATAM architecture.

· Traffic Control Module. It manages the communications with the RSVP daemon for the creation and release of Controlled Load flows and their correspondent CBR ATM multipoint circuits. It is described with more detailed below.

3. RSVP daemon

The RSVP functionality developed by UPM for BTI project includes a complete RSVP engine according to current standards [RFC2205] [RFC2210]. The main features are:

· Standard Winsock2 API according to Winsock2 Protocol Specific annex 10.

· IPv6 support (no IPv4 support is provided).

· Support for both Ethernet and ATM interfaces.

· Interaction with PATAM driver to offer actual Traffic Control implementation over ATM subnetworks, supporting styles FF and SE, and IntServ's Controlled Load reservations.

· Host (not router) implementation.

· Native IPv6 encapsulation.

3.1. Migration to Windows NT

To develop the RSVP engine (or daemon) it was decided to start from the well-known implementation of ISI (Information Sciences Institute, University of Southern California), which works on UNIX platforms. This daemon has been migrated to Windows NT (with the initial help of UNI-C) and completed in order to provide actual Traffic control support for ATM subnetworks.

Figure 4 shows the module architecture used in PATAM to support RSVP functionality. The main block is the ISI's RSVP daemon, migrated from UNIX to Windows NT and adapted to work under winsock2 architecture. It was also modified to interact with MSR IPv6 stack's. The main tasks carried out in the migration area were:

· The development of an RSVP API Library, to convert from ISI's native RAPI interface to winsock2 RSVP API.

· [image: image4.wmf]QoS aware Applications

WinSock

 2 API

Winsock2

Transport

 SPI

Winsock2.

dll

RSVP

RSVP

MSR IPv6

IPv4

Tunnels

LAN

PATAM

PATAM

ATM NIC

 Drivers

Figure

1

:

Protocol

Stack

Architecture

The implementation of an ATM Traffic Control Module in RSVP daemon to interact with the Traffic Control module of the PATAM driver.

· The modification of MSR's IPv6 stack to create a new low-level API to allow the sending and reception of RSVP packets over native IPv6 (raw sockets were not available in IPv6 stack), and to access interface and routing information.

· The migration of the core engine itself, adapting it to the Windows-specific asynchronous event notification.

3.2. Adaptation to winsock2 architecture

To offer the standard Winsock2 RSVP API to applications a standard Service Provider (SP) Library has been developed, together with the necessary installation tools which register the RSVP Service Provider as a standard Winsock2 provider.

In order to communicate the SP library (dynamically linked from the application) with the RSVP daemon an internal interface must be used. It has been decided to perform this communication through a TCP/IPv4 socket, maintaining as much as possible the same protocol that the original ISI’s implementation used for the same purpose (over a UNIX socket). This reuse of the internal protocol of ISI reduces the need of modifying internal code of the RSVP daemon, and also the probability of introducing new errors into it. On the other hand, it forces some deviations respect the Winsock2 standard API, which have been properly documented.

3.3. Interfaces with IPv6 stack: routing and I/O

An RSVP module has to access IP functionality at a lower level than a standard application. Regarding pure input/output (I/O), at least raw IPv6 access must be provided (unless UDP encapsulation is to be used, which is something probably not included in future specifications). But there is also necessary for RSVP to know what interfaces the system has, on which interface a PATH message arrives or through which set of interfaces a multicast packet should be forwarded according to the routing information used by IP. All this makes it necessary to provide RSVP with a lower level IPv6 interface than usual applications.

Since standard IPv6 Winsock2 interface does not offer the low level features that RSVP needs, a more advanced internal standard interface to IPv6 has been used: TDI (Transport Driver Interface). Also, the MSR’s IPv6 stack has been modified to offer the required functionality. The TDI calls have been encapsulated to offer to the core processing the higher level interfaces it already used:

· I/O: A System Independent Interface to Network and Transport Layers is provided.

· Routing: The daemon already used a generic Routing Support Interface that also has been maintained.

3.4. Traffic Control Interface

ISI introduces a Link Layer Dependent Adaptation Layer (LLDAL) between core RSVP processing and the actual TC (the latter may present, for example, the TC interface specified in RFC 2205), offering a higher level interface to TC (LLDAL interface). It also provides a LLDAL and an (almost) empty TC implementation suitable for Ethernet interfaces.

In BTI the LLDAL interface has been maintained, and a new ATM-specific LLDAL (pertaining to the daemon) and TC (actually implemented within PATAM) have been developed. In the daemon side, a TC stub has been created to communicate with the TC module of PATAM (through an UDP/IPv4 socket). This TC stub offers to the ATM LLDAL the interface of the TC of PATAM, which is a simplified and adapted to ATM version of the TC interface specified in RFC 2205. This simplified interface can be summarised as follows:

· Daemon (actually, LLDAL) may ask the opening of a multipoint QoS circuit with one leaf (i.e. Next Hop) or the adding of a leaf to an existing circuit when new reservations must be placed. It also may ask the closing of specific leafs or circuits when tearing reservations down.

· PATAM may notify the closing of leafs/circuits to the daemon.

Figure 5 summarises the modules involved in the TC for the two types of interfaces supported. BTI work has been focused on the remarked modules.

[image: image5.wmf]Applications

USER

Winsock2

MSR IPv6

ATM

PATAM

PATAM

KERNEL

FORE

ATM SP

Proxy Driver

Figure 3: IPAM

Detailed

Architecture

Figure 5: Traffic Control Architecture in PATAM
4. Conclusions

Although the timeframe for the development and integration of the protocol stack was very tight (in fact, the decision to go for this solution was taken at the beginning of 1999, with few months left for this complex job), the big effort dedicated to the task concluded with a successfully running solution. That solution fulfilled the requirements imposed by BTI network scenario and applications running on Windows NT (videoserver, videoconference and data applications), and made possible the experimentation with the whole BTI system during usability testing phase.

The effort invested to carry out the protocol stack development was very high. In fact, it was much higher than foreseen, due to several reasons:

· Instabilities of ATM drivers. This was one of the main problems we faced during development, integration and testing phase. The access to ATM services through winsock2 API was found to be buggy, not very well documented and very frequently was the cause of computer crashes ("NT blue screens"). Several bugs were reported to the manufacturer, but unfortunately, no solution arrived before the end of the project.

· ATM Interoperability problems. During the testing phase, a lot of effort was invested to tune all ATM parameters (Information Elements) used in ATM circuits to get a combination of values able to work over all BTI scenarios. It was noted that, depending on the destination of a call (a router, a PC, etc) and the type of ATM switches being passed, some combination of parameters work or failed. Any time a new version of ATM drivers was tested or anytime a new network scenario (with, for example, switches from other manufacturers) was used, it was necessary to repeat all the tuning work.

The use of ATM protocol analyzers was found very useful to isolate and solve these kind of problems. However, in some situations, some inconsistencies were detected between the two protocol analyzers used at UPM, complicating even more the solution of the problems.

· Developments inside Windows NT Kernel. Although the decision to develop a user-mode driver minimized the developments inside Windows NT kernel, the modifications needed were still very important (2.200 new lines added to the IPv6 protocol stack), and required a lot of effort due to the difficult conditions in which device drivers are developed.

· Advance APIs in IPv6 implementation. The lack or partial support in the IPv6 stack of the advanced APIs needed to integrate RSVP (for example, APIs to send and receive raw packets with interface knowledge or to know the number and addresses of IPv6 interfaces in the system) complicated the development, as we had to modify ourselves the IPv6 stack to add some of these interfaces.

· State of the art environment. Apart of the technologies mentioned above, most of other components being used (router, access network, IPv6 and RSVP support in servers, etc) showed problems and instabilities. For example, some bugs were discovered in IPv6 support in ISI's RSVP daemon; or some problems were detected in multicast support of IPv6 stack. Besides, software versions of some of the components changed during the project; or, in other cases, it was necessary to test several different versions to select the best for BTI project environment.

In summary, most of the problems found were due to the use of state-of-the-art implementations of the technologies being integrated in BTI project. Even some technologies we though at the beginning that should be stable enough (like the use of SVCs in ATM networks) were found to be unstable.

Finally, we would like to mention some interesting lines to continue the work described here:

· ABR support. Due to the lack of ABR support in the winsock2 ATM API used in the project, the implementation of Controlled Load services over ABR ATM circuits could not be finish. We think this is a very interesting and promising line of continuation of the work being described here.
· Integrated QoS interface. As mentioned, the protocol stack provides two different interfaces: one is used to access IPv6 stack to send and receive data, and the other to access RSVP services to make reservations. Inside winsock2 community, a lot of effort was invested to integrate both interfaces, in order to offer applications an integrated API with QoS support [WS2-GQOS]. We think that the use of an integrated API would simplify greatly the adaptation of applications.

5. References

[RFC2491]
IPv6 over Non-Broadcast Multiple Access (NBMA) networks.

G. Armitage, P. Schulter, M. Jork, G. Harter. January 1999.

[RFC2492]
IPv6 over ATM Networks. G. Armitage, P. Schulter, M. Jork.

January 1999.

[RFC2022]
Support for Multicast over UNI 3.0/3.1 based ATM Networks. G.

Armitage. November 1996.

[MSRIPv6]
Microsoft Research's IPv6 implementation. Available on:

http://www.research.microsoft.com/msripv6.

[MARS-NIST]
NIST's MARS client implementation. Available on:

http://snad.ncsl.nist.gov/hendaz/NIST-MARS
[RFC2379]
RSVP over ATM Implementation Guidelines. L. Berger. August 1998.

[RFC2380]
RSVP over ATM Implementation Requirements. L. Berger.

August 1998.

[RFC2381]
Interoperation of Controlled-Load Service and Guaranteed Service

with ATM. M. Garrett, M. Borden. August 1998.

[RFC2382]
A Framework for Integrated Services and RSVP over ATM. E.

Crawley, L. Berger, S. Berson, F. Baker, M. Borden, J. Krawczyk.

August 1998.

[RSVPd]
Information Science Institute's RSVP daemon. Available on:

http://www.isi.edu/rsvp.

[WS2-API]
Windows Sockets 2 Application Programming Interface. Revision 2. August 7,

1997.

[WS2-Annex]
Windows Sockets 2 Protocol-Specific Annex. Revision 2.0.3. May 10, 1996.

[Gallen97]
Creating User-Mode Device Drivers with a Proxy. Galen C. Hunt, University of

Rochester. First USENIX Windows NT Workshop. Seattle, Washington, 1997.

[WS2-GQOS]
Winsock Generic QOS Mapping. Yoram Bernet, Jim Stewart, Raj Yavatkar, Dave Andersen, Charlie Tai, Bob Quinn, Kam Lee. Windows Networking Group.

[LEVERAGE]
LEarn from Video Extensive Real Atm Gigabit Experiment (LEVERAGE). ACTS project 109. http://www.dit.upm.es/leverage.

[RFC2205]
Resource ReSerVation Protocol (RSVP) -- Version 1 Functional Specification. R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin. September 1997.

[RFC2210]
The Use of RSVP with IETF Integrated Services. J. Wroclawski. September 1997.

[Fernandez98]
Specification of Cooperative Work Services. David Fernández, Luis Bellido. Deliverable 921 of LEVERAGE ACTS project. Available in http://www.dit.upm.es/leverage.

[RFC2553]
R. Gilligan, S. Thomson, J. Bound, W. Stevens, RFC 2533, “Basic Socket Interface Extensions for IPv6”, March 1999.

[RFC2292]
W. Stevens, M. Thomas, RFC 2292, “Advanced Sockets API for IPv6”, February 1998.

[RFC2133]
R. Gilligan, S. Thomson, J. Bound, W. Stevens, RFC 2133, “Basic Socket Interface Extensions for IPv6”, April 1997.

[RAPI]
RAPI -- An RSVP Application Programming Interface. R. Braden, D. Hoffman. Internet Draft.

�EMBED Word.Picture.8���

�EMBED Word.Picture.8���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

Page 1

[image: image6.wmf]RSVP

daemon

ATM TC

Stub

Core RSVP Processing

Internal TC

interfaces

PATAM

TC

module

Dummy

TC

UDP/IPv4

LLDAL

interface

LLDAL

Eth

LLDAL ATM

(

Open/

close

circuits/

leafs

)

[image: image7.wmf]QoS aware Applications

WinSock

 2 API

Winsock2

Transport

 SPI

Winsock2.

dll

RSVP

RSVP

MSR IPv6

IPv4

Tunnels

LAN

PATAM

PATAM

ATM NIC

 Drivers

Figure

1

:

Protocol

Stack

Architecture

[image: image8.wmf]RSVP

daemon

(

rsvpd

)

RSVP API

library

QoS aware Applications

Traffic

Control

in

ATM module

MSR-IPv6

Winsock2

Internal message

based

 API

Adaptation

module

Figure 4: RSVP Architecture in PATAM

[image: image9.wmf]Applications

USER

Winsock2

MSR IPv6

ATM

PATAM

PATAM

KERNEL

FORE

ATM SP

Proxy Driver

Figure 3: IPAM

Detailed

Architecture

_1005571906.doc

RSVP

 daemon

(

rsvpd

)

RSVP API

 library

QoS aware Applications

Traffic

Control

in

ATM module

MSR-IPv6

Winsock2

Internal message

based

 API

Adaptation

 module

Figure 4: RSVP Architecture in PATAM

_1005571985.doc

ATM TC Stub

(Open/close

circuits/leafs)

Core RSVP Processing

LLDAL ATM

TC

module

LLDAL interface

RSVP

daemon

UDP/IPv4

LLDAL Eth

Internal TC interfaces

Dummy

TC

PATAM

_1005571185.doc

QoS aware Applications

WinSock

 2 API

Winsock2

Transport

 SPI

Winsock2.

dll

RSVP

RSVP

MSR IPv6

IPv4

Tunnels

LAN

PATAM

PATAM

ATM NIC

 Drivers

Figure � SEC Figure * ARÁBIGO �1�: Protocol Stack Architecture

_1005571885.doc

Applications

USER

Winsock2

MSR IPv6

ATM

PATAM

PATAM

KERNEL

FORE

ATM SP

Proxy Driver

Figure 3: IPAM Detailed Architecture

_1005571041.doc
[image: image1.bmp]

IPv6 Access (IPAM)

ATM Access Module (ATAM)

Packet Forwarding

Traffic

Control

Module

MARS

Client

PATAM

PATAM

FORE ATM SP

MSR IPv6

 Stack

RSVP

daemon

Flows

Flows

Database

Database

Classifier

Scheduler

Receiver

