
A Repository for Integration of Software Artifacts
with Dependency Resolution and Federation Support

Rodrigo García-Carmona, Félix Cuadrado, Juan C. Dueñas, and Álvaro Navas

Departamento de Ingeniería de Sistemas Telemáticos, ETSI Telecomunicación,
Universidad Politécnica de Madrid, Madrid, Spain

{rodrigo,fcuadrado,jcduenas,anavas}@dit.upm.es

Abstract. While developing new IT products, reusability of existing compo-
nents is a key aspect that can considerably improve the success rate. This fact
has become even more important with the rise of the open source paradigm.
However, integrating different products and technologies is not always an easy
task. Different communities employ different standards and tools, and most
times is not clear which dependencies a particular piece of software has. This is
exacerbated by the transitive nature of these dependencies, making component
integration a complicated affair. To help reducing this complexity we propose a
model-based repository, capable of automatically resolve the required depen-
dencies. This repository needs to be expandable, so new constraints can be ana-
lyzed, and also have federation support, for the integration with other sources of
artifacts. The solution we propose achieves these working with OSGi compo-
nents and using OSGi itself.

Keywords: Component Distribution, Model-driven Engineering, OSGi, Open
Source, Software Integration.

1 Introduction

In recent years software development has been undergoing a huge change, evolving
from a closed software paradigm to new processes that incorporate open source soft-
ware in products and services. The number and relevance of software developments
based in the open source paradigm have experienced an exponential growth [1].

The reason for this lies in the particular strengths that open source can bring into
the table, like its ability to reduce IT costs, deliver products faster and improve the
security and reliability of systems. This situation has been also fostered by the numer-
ous success cases in industry that have followed this model. In fact, sources like
Forrester have described 2009 as “the year IT professionals realized that open source
runs their business”, and predict that this trend is going to continue in the following
years [2].

Most of the strengths that open source provide are the product of the open com-
munities and the development models that arise from them. At this point it has be-
come clear that the community efforts are leveraged by the participating elements,
with everyone benefitting from the created ecosystem. Example succesful communi-
ties are the Apache Software Foundation, the Eclipse Foundation, the ObjectWeb
community and SourceForge.

 A Repository for Integration of Software Artifacts with Dependency Resolution 167

Those communities have matured with different collaboration and architecture
models. As a consequence, these communities are like isolated islands which no
communication between them. Unfortunately, while they achieve a very high internal
consistency, there is a severe lack of compatibility and integration among them. This
hampers one of the most important factors for the success of open source; the reusa-
bility of code, since the lack of integration complicates this process. These integration
challenges are also aggravated by the multiplicity of tools used by different projects.
To further complicate this issue, most of these tools are not concerned in working
with other solutions.

The heart of this problem lies in evaluating the interdependencies of software
components. These dependencies tend to form a complex mesh that can span several
projects and code bases and it is difficult and costly to navigate. One of the most se-
vere problems of open source development is figuring which already existing compo-
nents one has to use.

In addition to the technology impedance mismatch, there are additional factors
which must be considered. An often overlooked factor with open source usage is the
existence of several software licenses. While on first thought these elements should
not interfere, they do actually restrict the potential uses, since some of these licenses
are incompatible between them or with commercial ones.

It can be seen that the problem lies not only in code interoperability but also in ad-
ditional aspects, such as legal license compatibility, or design according to similar
hardware capabilities. In practice, all these problems tend to produce fragmentation,
complicating the use of what software it is already available.

The meeting point for this integration is, in almost every community, a software
repository. Since the repository act as a central hub for all development efforts, the
difficulties exposed here are particularly evident in it.

In this article we present a comprehensive, model-based component repository
that provides two features that ease the integration of software elements: 1) An auto-
matic dependency resolution that can work with several types of concerns (software,
hardware, etc...) and 2) A federation system that can aggregate the contents of other
repositories and in turn expose their own components to the outside world.

This repository has been developed in the context of the ITEA-OSAMI European
project and its objective is to act as a main hub in an Internet federation of reposito-
ries, while being publicly available. It integrates artifacts published by the members
of both the ITEA-OSAMI project itself and external partners.

This article is structured as follows: The next section gives a brief explanation of
the most recent developments in the topics that concern our work. Section 3 explains
our proposal in detail, and section 4 performs a validation of our work using an im-
plementation of the repository. Finally, the last section outlines the conclusions we
have reached and shows how our work could be further developed in the future.

2 State of the Art

In this section we provide a brief state of the art of the technologies that are especially
relevant for our proposal: the OSGi component model and the already existing soft-
ware repository solutions.

168 R. García-Carmona et al.

2.1 The OSGi Component and Service Model

OSGi is an open specification that defines a component and service model for the
Java platform. The latest version of the specification is 4.2 [3], and is maintained by
the OSGi Alliance, a consortium formed by embedded and enterprise companies, such
as IBM, Oracle, Red Hat or Siemens. It was originally designed for home gateways
and embedded systems, but its adoption has greatly increased lately in desktop tools
and enterprise application servers.

The relevance of the OSGI specification has increased mainly because it provides
a modularity layer that was missing in the Java platform. This is enabled by the defi-
nition of OSGi bundles. Bundles extend java libraries (JAR files), allowing them to
expose their functionality to the rest of the platform in a controlled way. Bundles use
the Java manifest file to declare explicitly what does the component provide to the
rest of elements (in the form of java packages) and what does it require in order to
work properly (either java packages or complete bundles), providing in both cases
version compatibility information. This directly addresses the ‘JAR hell’ problem of
complex Java-based systems, greatly easing the deployment and configuration of new
software.

Additionally, OSGi bundles collaborate through a lightweight service mechanism,
with services being runtime Java objects that implement interfaces. This enables ef-
fective decoupling between collaborating components and simplifies the development
of extensible systems. The OSGi framework provides an execution platform for OSGi
bundles, enabling dynamic deployment and configuration of the components. These
factors make OSGi bundles an ideal specification for open, composable service-based
ecosystems, as it provides simple mechanisms for effective interoperability and mod-
ularization.

All in all, OSGi is the best solution in the Java world for the design and imple-
mentation of modular applications. It enables an even lower coupling and brings the
SOA principles to the virtual machine. Our proposal will use OSGi for both the com-
ponents the repository will manage and the actual repository itself.

2.2 Software Repository Standards

At this moment there are several repository technologies that are popular in open
source communities. Every one of them has its own component model and capabili-
ties. We detail each in this section, with a special focus in their support of OSGi bun-
dles and federation capabilities.

Maven [4] is one of these solutions, a software project management and compre-
hension tool. Maven has become the de facto standard for managing Java projects,
thanks mainly to the support and its extended use inside the Apache community. Ma-
ven uses a generic project description model for describing software projects named
Project Object Model (POM). The POM file of a project defines the project’s life-
cycle as well as its dependencies and configuration parameters. However, this model
has been defined as generic as possible, in order to cover a wide range of software
projects. Hence, it does not accurately reflect the special relationships of specific
types of software components, such as OSGi bundles. For example, dependencies
onto a particular software package can be defined, but not onto a complete bundle.

 A Repository for Integration of Software Artifacts with Dependency Resolution 169

POM cannot describe these kinds of dependencies, losing information in going from
manifest to POM. Despite this disadvantage, Maven repositories provide other inter-
esting capabilities, such as being able to store all the information concerning a project
(source code, documentation, etc) or the hierarchical federation with other Maven
repositories, augmenting the Maven basic dependency resolution mechanism. How-
ever, this mechanism does not work with repositories implemented using other tech-
nologies.

Another model used to describe bundles is the OBR (OSGi Bundle Repository)
project. This model was presented as the draft OSGi RFC 112 [5]. The RFC defines
both an XML schema for bundle description and the Java API for browsing OBR
repositories. An OBR repository is very simple in its structure, providing just an XML
file describing the server contents. This eases the creation of OBR repositories as only
the bundles and how to download them need to be described, leaving plenty of free-
dom to design the architecture supporting those operations. This simplicity has the
drawback that the clients are forced to carry out most of the operations, a problem
aggravated by the fact that there is no standard definition of an OBR client. The draft
status of the OBR presents additional disadvantages, such as the lack of mechanisms
for managing repository contents (e.g. upload new bundle, update, or delete). and that
the federation mechanism between OBR repositories is not well-defined.

In the 3.0 version of Eclipse, the Eclipse architecture was changed to use OSGi as
the project core. This change pushed the Eclipse community to develop their own
bundle repository, named P2 [6]. The P2 repository is widely used, since version 3.4
of the Eclipse Platform uses it as the management mechanism for its components
(OSGi bundles). The P2 specification defines two repository types: metadata and
artifact. The metadata repository stores Installable Units, which are the P2 representa-
tion of an artifact. This means that almost anything can be described as an Installable
Unit (configuration files, bundles, executables, etc). The metadata repository also
provides the P2 federation mechanism. Complementing it is the artifact repository,
which stores the binary and description files associated to the Installable Units. There
is also a third component, the Director, which is part of the repository client. The
Director is in charge of resolving dependencies and installing and uninstalling the
artifacts. However, this solution has an important drawback: Its component model is
concerned only with software direct dependencies, being oblivious to other con-
straints that could affect artifacts.

Also, the increasing success of the OSGi platform has stimulated the creation of
proprietary bundle repositories especially dedicated to store this type of software
components. The Spring Bundle Repository [7] is the most notorious example of this
trend. This repository stores a collection of bundles and library description files ready
for production use. A library description file is a document describing a set of bundles
that are frequently used together. The access to the repository is made through Maven,
Ivy or a web interface. The web interface shows information related to the dependen-
cies and exported resources of a bundle, offering links to download them. However,
the proprietary nature of this solution greatly limits its applicability and usefulness.

It can be seen that there are a lot of existing solutions for a bundle repository. But
with the exception of the Spring repository (which supports Maven), there are no
federation mechanisms between repositories of different types. On top of that, differ-
ent development communities have chosen different repository solutions. This fact
makes implementing a dependency resolution mechanism a difficult task.

170 R. García-Carmona et al.

Despite a previous attempt at creating standard-complying repositories [8], this
work has not been followed up since its publication.

However, in the digital contents world there are many studies [9] and proposals
[10-12] on this topic. But none of them have been applied to a software artifact repo-
sitory. There are huge differences in nature and needs between software components
and multimedia contents, and the solution that works with one cannot be used with the
other without severe modifications.

3 Proposed Solution

In this section we detail our proposed solution. For this aim we have divided this
chapter in several subsections.

As we have already said in the introduction, our aim was to provide an artifact re-
pository that helps to improve software integration. To achieve this, our solution pro-
vides two main features: A faceted dependency resolution, and a repository federation
engine. One subsection is devoted to each of them.

Also, to fully grasp how we propose to fulfill both, first we introduce two basic
topics needed for the proper understanding of our proposed repository: 1) the charac-
teristics of the model representation of software artifacts, and 2) the architecture of
the repository itself.

3.1 Software Component Metamodel

To enable the correct processing of the components the repository needs to manage,
and the integration of information to and from other solutions, it is imperative to have
a model representation of the software elements. Therefore, we have defined a meta-
model with enough expressivity to capture all the information that we need, but at the
same time hiding non needed data.

From this metamodel, a model instance describing each software artefact, its ca-
pabilities and its needs can be created. We have named these model instances Dep-
loyment Descriptors.

Although the metamodel will be primarily used to represent OSGi-related arte-
facts, it has been designed to support without modifications other elements, such as
non-bundle JARs or additional component/service models (such as EJBs, Spring
beans or Web Services). The metamodel aims to capture all the relevant information
of all types of software elements. This is enabled by the concept of Resource, which
we have adopted from the OMG Deployment & Configuration [13] standard.

Figure 1 depicts a subset of the metamodel. As can be seen in it, Resources are the
main building blocks. A Resource represents any logical or physical manageable sys-
tem element, and it is defined by three fixed parameters (name, version and type)
common to all Resources and an undefined list of specific Properties for each Re-
source type.

The core element is the Deployment Unit. Deployment Units represent the arti-
facts which can be deployed over the environment containers. In an OSGi context,
Deployment Units represent OSGi bundles. Conceptually, a Deployment Unit would
be the lowest abstraction level of our software model, being the unit of software
distribution. The Deployment Unit is composed by a set of children Resources, De-
pendencies and Constraints that provide computable information about the developer,

 A Repository for Integra

software license, packaging
ware compatibility restrictio

Fi

Dependencies represent
order to assure a smooth ru
satisfy a Dependency: speci
the two main mechanisms
addition to this, the metamo
enabling to differentiate re
Services from requirements
provides a Java package). T
be remote or local.

Finally, Constraints ena
tion environment, each one
from) the environment. Fo
Constraints, depending on
(to be present and not used

ation of Software Artifacts with Dependency Resolution

g type, exported packages, logical dependencies and ha
ons.

g. 1. Software component metamodel

t the required physical and logical dependencies needed
unning of the Deployment Unit. Two types of elements
ific Resources or whole Deployment Units. This represe
defined in OSGi: Require-Bundle and Import-Package
odel allows us to further describe the type of Dependen
equirements on remote resources such as Web or RE
s that must be satisfied by a unit in the same host (e.g. a
This aspect is identified by a locality parameter that co

able the expression of requirements over the runtime exe
e requiring a specific Resource to be present at (or abs
ollowing this definition, we have defined three kinds
the required behaviour: default (to be present), exclus

d more than once) and not (to not be present). To furt

171

ard-

d in
can
ents

e. In
ncy,
EST
as it
ould

ecu-
sent
s of
sive
ther

172 R. García-Carmona et al.

extend the Dependency and Constraint models, Properties can be defined. Each
needed Property can be defined by a name, an evaluation function and a threshold
value.

As an example, a typical Constraint would identify a Resource of type “hard-
ware.processor” with an additional Property “speed” of a kind “minimum” and an
expression value of “2000”. This means that the Deployment Unit requires a micro-
processor with a minimum speed of 2 GHz.

Both Dependencies and Constraints are shown in Figure 2.

Fig. 2. Dependencies and constraints

The metamodel allows us to represent all the OSGi-specific mechanisms, as well
as expressing important information that is not contemplated on the original format
(the manifest file) or the information models of other repository solutions. This means
that a conversion from one of those solutions into our proposal would not result in the
loss of information, although the opposite would.

3.2 Repository Architecture

The need to federate with multiple types of repositories, as well as evaluating compo-
nent dependency taking into account multiple factors have motivated us to design the
architecture of the repository with a modular and extensible approach. We have
selected the OSGi platform as the base technology to achieve those requirements. On
a side note, this allowed us to test the system from the start, in order to check whether

 A Repository for Integration of Software Artifacts with Dependency Resolution 173

the repository was able to host itself successfully. Figure 3 shows a layered view of
the repository components.

Fig. 3. Repository architecture

In the lower levels lie the Java Virtual Machine, the OSGi framework, and a data-
base solution for storing the relevant information. On top of it are the basic OSGi
components from third parties that are needed for the repository to work. The reposi-
tory uses Spring Dynamic Modules for structuring the inter-bundle communications.
The EMF (Eclipse modeling Framework) components enable the definition of the
metamodel and provide the tools needed to work with them programmatically. Hiber-
nate Provides an ORM (Object-Relational Mapping) interface with the database sys-
tem. Finally, the Apache Tomcat bundles embed a lightweight application server that
will host the remote access interfaces developed for the repository.

The next layer contains the basic components of the repository:

• Software Model: Provides the metamodel defined at the previous section, as well
as Java bindings and marshalling mechanisms.
• Repository Core: The basic component of the repository. Provides the main ser-
vice interfaces of the components and defines the extension semantics.

174 R. García-Carmona et al.

• Repository Manager: This component manages the physical artifacts and the com-
ponent information. It provides CRUD (Create-Read-Update-Delete) operations over
the managed Deployment Units,
• Web Interface: Web-based graphical user interface that allows human users to
browse the repository contents.
• Remote Interface: Exposes a REST interface that enables the communication be-
tween the repository and other software.
• Resolver: The component that processes and resolves Deployment Unit dependen-
cies, obtaining unit closures that work correctly together.

Finally, the topmost level of the diagram shows some extensions to the repository that
expand the base functionality to federate with an additional type of repositories
(OBR), and apply additional criteria for the dependency resolution. Over the next
sections we will present additional details on the federation and resolution capabilities
of the repository.

3.3 Faceted Dependency Resolution

This modular architecture makes possible the easy expansion of the repository capa-
bilities. This feature is used to define different types of dependencies, each one re-
solved by a different component. Moreover, this structure enables the definition of a
faceted dependency resolution engine. In it, there are not only several dependency
types, but also additional conditions that the candidates to satisfy one need to comply.
These conditions are called Facets.

An example of a Facet is the license compatibility. It is perfectly possible that a
Deployment Unit satisfies every dependency that another has, but at the same time do
not be valid because their licenses are incompatible. Other Facets could be security
settings, packaging procedures or execution requirements. Each Facet can be added to
the resolution engine as an OSGi bundle, and it offers its features as services that are
called by the resolution core component.

An example of this process that uses a License Compatibility Facet we developed
is shown in Figure 4. In it a user calls the resolver with the intention of knowing the
dependencies needed for a Deployment Unit (DU). The resolver processes every De-
pendency, looking for other Deployment Units that can satisfy it. After some of them
have been found, the resolver searches for Facets that need to be checked and, after
finding one (License Compatibility), makes use of it. In this particular example only
one unit is valid after this check.

The integration of new facets to the dependency resolution is straightforward, and
the license compatibility is just one example of application. As the diagram shows,
the second loop will check each DU for every detected facet.

3.4 Repository Federation

To enable the integration between open source components it is not enough to just re
solve their dependencies. It is also necessary to be able to provide the artifacts that
fulfill those requirements.

 A Repository for Integration of Software Artifacts with Dependency Resolution 175

Fig. 4. Faceted dependency resolution

Since open source communities are fragmented and each one uses different tools
and techniques, the repository needs to access and understand the information that lies
in other repositories. To achieve this end, the federation capabilities allow our reposi-
tory to communicate with external types of repositories currently available. Federa-
tion support is designed with extensibility in mind, and each technology extension can
be federated just by providing three services:

• Model transformation service between our information model instances and the
format the target solution uses to represent software artifacts.
• Remote manager service that accesses the information contained in the external
federated repositories.
• Remote interface service that can be accessed by the target solution repositories.
This is only possible if the target solution has some kind of federation support for
repositories of its own type.
For a more detailed explanation of how these features can be implemented we will
use OBR as an example of a target solution. An example of an infrastructure that uses
this two-way federation is depicted in Figure 5.

Sample Integration: OBR. The OSGi Bundle Repository RFC is a draft standard for
providing a common interface to distributed OSGi repositories. Its official nature,
alignment to OSGi concepts and the explicit acknowledgement of federation require-
ments make it an ideal candidate for testing our federation approach. Here we present
how we achieve two-way integration between our repository instances and federated
OBR repositories.

We talk about two-way federation, as we both act as OBR providers and consum-
ers. For external OBR repositories, we offer an OBR view that can be used by them in
their standard federated dependency resolution processes. Additionally, our repository
can handle a list of external OBR repositories, and can delegate dependency

176 R. García-Carmona et al.

resolution requests to the distributed OBR instances. Both approaches of federation
are achieved though the same method: Model transformation from our generic model
to the specific component model defined by OBR.

Fig. 5. Repository federation

For maximizing extensibility, the OBR model does not explicitly rely on OSGi
concepts. The repository works with resources, identified by a symbolic name and a
version. Additionally, a download URL is provided for each element. Each resource
contains two types of declarations. First, resources offer a list of capabilities to the
environment. They represent either the whole element (named bundle), or a software
element such as a java package (named package). Each capability is further refined
through properties, which have a name, value and value type (e.g. String or number).
The second kind of elements are requirement statements, that demand the presence of
resources in the resolved configuration. They model logical requirements that must be
satisfied. This specification’s concepts can be mapped to a subset of the Deployment
Unit model.

Figure 6 presents an example mapping between both models. Every OBR concept
has an equivalent definition in our abstractions. The OBR resource plus the bundle
capability elements are mapped to the base Deployment Unit concept (The definition

 A Repository for Integration of Software Artifacts with Dependency Resolution 177

of units as resource subclasses allows this). Additional capabilities are mapped to unit
exported Resources, such as the presented java package. Resource visibility informa-
tion is lost, which is not problematic for OSGi-specific elements (all of them are lo-
cal), but presents the limitations of OBR for reasoning over distributed physical envi-
ronments. Additionally, each OBR requirement is mapped into a logical Dependency.
All the information derived from the Constraints from our model has no equivalent.
This bears no impact from the OBR perspective, as our repository provides all the
required information. On the other hand, the use of federated OBR repositories by our
specific instance can result in lesser-quality results, in cases when physical concerns
need to be evaluated.

Fig. 6. Model mapping between OBR and the presented model

4 Validation

ITEA-OSAMI is an european project which was executed by 34 partners from both
the academia and enterprise. The objective of this project was to develop open source
common foundations for a distributed, dynamic service-oriented platform.

Consortium partners came from multiple domains (healthcare, personal, and mo-
bile office), followed different software development processes, and depended on
existing open source resources from different communities. This created a need for a
centralized platform that eased partner integration.

The repository presented in this article has been developed and deployed in order
to address the project requirements. It has widely succeeded at this task, becoming the
central point of the ITEA-OSAMI ecosystem. ITEA-OSAMI’s running instance of the
repository could be publicly accessed at the time of writing of this article1. (Figure 7
shows the visual aspect of the web interface, which is listing several units already
resolved).

1 http://repository.osami-commons.org

178 R. García-Carmona et al.

Fig. 7. Screenshot of the repository

After assessing partner concerns, we provided two extensions to the repository.
Regarding federation, an OBR extension was developed, as it was mandatory to sup-
port OBR-based deployment clients as well as accessing open source bundles devel-
oped at two third-party repositories. Additionally, since the beginning of the project
open source license management was a potentially conflicting aspect among partners.
However, these issues were addressed with the definition of a license-aware depen-
dency Facet, based on the dependency compatibility analysis module from another
project partner.

In this context, we have validated the proposed metamodel, as well as the defined
architecture and extensibility capabilities. It has successfully been used by all the
project partners, providing a common integration point for the developed open source
software and services, both internally created and from the main open source com-
munities.

5 Conclusions and Future Work

In this article we have proposed an architecture for a repository for the integration of
software artifacts, with a special focus on OSGi bundles. This repository has been
designed around an information model for software components, which manages to
show all relevant data while hiding the undesired complexities.

 A Repository for Integration of Software Artifacts with Dependency Resolution 179

We have also shown how this architecture has been created to be extensible. Using
this modularity we have demonstrated how it can be easily expanded to support two
important features:

• Faceted dependency resolution: Offers support for an unlimited number of condi-
tions that dependencies are forced to respect.
• Two-way federation: Enables our solution to access contents available in other
repositories and at the same time expose itself to them.

We also have developed a license compatibility Facet based upon existing open
source work and the components needed to achieve federation with OBR repositories.

Finally, our work has been validated in the context of the ITEA-OSAMI European
project, where it has been subjected to an intensive use by more than 30 partners from
different countries and sources (universities, research centers, software and telecom
companies, etc).

Concerning future developments, the most straightforward way to improve the al-
ready existing work is through the support of more repository technologies for federa-
tion and new dependency Facets. In the first field, federation with Eclipse P2 would
be the most interesting repository to support, since it sees wide use in several com-
munities. About dependency Facets, more of them could be developed, taking as an
example the license check already created. These components are relatively easy to
implement thanks to the infrastructure of our proposal.

Not directly related with this, but also interesting, are the possibilities for the repo-
sitory to work in a cloud environment. This line of work is concerned not only with
the deployment of the repository itself, but also with how it can manage the software
artifacts of several types of cloud solutions (IaaS, PaaS or SaaS). To support features
like these the information model would probably need to be extended and the archi-
tecture of the repository revised.

Using the capabilities of OSGi plus some extensions already in the making2, the
possibility of extending OSGi for a complete PaaS solution is turning into a reality. If
this possibility finally materializes, the proposed repository could be expanded to
work in this kind of environment.

Acknowledgements. The work presented in this article has been performed in the
context of the European project ITEA-OSAMI, under grant by Spanish Ministerio de
Industria, Turismo y Comercio in the PROFIT program.

References

1. Deshpande, A., Riehle, D.: The Total Growth of Open Source. In: Russo, B., Damiani, E.,
Hissam, S., Lundell, B., Succi, G. (eds.) Open Source Systems. IFIP, vol. 275, pp. 197–
209. Springer, Boston (2008)

2. Evelson, B., Hammond, J.: The Forrester Wave: Open Source Business Intelligence (BI),
Q3 2010, Forrester Research (2010)

2 http://www.osgi.org/wiki/uploads/Design/
rfp-0133-Cloud_Computing.pdf

180 R. García-Carmona et al.

3. OSGi Alliance, OSGi Service Platform Release 4 Version 4.2 Specifications (June 2009)
4. Massol, V., Van Zyl, J., Porter, B., Casey, J., Sanchez, C.: Better builds with Maven. Mer-

gere Inc. (2006)
5. Hall, R.S.: OSGi RFC-0112 Bundle Repository (February 2006)
6. Le Berre, D., Rapicault, P.: Dependency management for the Eclipse ecosystem: Eclipse

P2, metadata and resolution. In: Proceedings of the 1st International Workshop on Open
Components Ecosystem. ACM (2009)

7. Rubio, D.: Pro Spring Dynamic Modules for OSGiTM Service Platforms. Apress (2009)
8. Iyengar, S.: A universal repository architecture using the OMG UML and MOF. In: Pro-

ceedings of the Second International Enterprise Distributed Object Computing Workshop,
EDOC 1998 (1998)

9. Kraan, W., Mason, J.: Issues in Federating Repositories, A Report on the First Internation-
al CORDRAtm Workshop. D-Lib Magazine 11(3) (2005)

10. Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., Tansley, R.,
Walker, J.H.: DSpace, An open Source Dynamic Digital Repository. D-Lib Magazine 9(1)
(2003)

11. Van de Sompel, H., Lagoze, C., Bekaert, J., Liu, X., Payette, S., Warner, S.: An Interoper-
able Fabric for Scholarly Value Chains. D-Lib Magazine 12(10) (2006)

12. Van de Sompel, H., Chute, R., Hoschstenbach, P.: The aDORe federation architecture:
digital repositories at scale. International Journal on Digital Libraries 9(2)

13. Object Management Group. Deployment and Configuration of Distributed Component-
based Applications Specification. Version 4.0 (April 2006)

