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Abstract: The ability of accurate and scalable 
mobile device recognition is critically impor-
tant for mobile network operators and ISPs to 
understand their customers’ behaviours and en-
hance their user experience. In this paper, we 
propose a novel method for mobile device model 
recognition by using statistical information 
derived from large amounts of mobile network 
traffic data. Specifically, we create a Jaccard- 
based coefficient measure method to identify a 
proper keyword representing each mobile de-
vice model from massive unstructured textual 
HTTP access logs. To handle the large amount 
of traffic data generated from large mobile 
networks, this method is designed as a set of 
parallel algorithms, and is implemented through 
the MapReduce framework which is a distrib-
uted parallel programming model with proven 
low-cost and high-efficiency features. Evalua-
tions using real data sets show that our method 
can accurately recognise mobile client models 
while meeting the scalability and producer-ind-
ependency requirements of large mobile net-
work operators. Results show that a 91.5% acc-
uracy rate is achieved for recognising mobile 
client models from 2 billion records, which is 
dramatically higher than existing solutions. 

Key words: mobile device recognition; data 
mining; Jaccard coefficient measurement; dis-
tributed computing; MapReduce 

I. INTRODUCTION 

With increasing popularity of user-friendly mo-
bile clients (smartphones, pads, and tablets), 
which are coupled with capable mobile appli-
cations (location-aware, multimedia, and so-
cial applications) supported by advanced cel-
lular communication technology, mobile cli-
ents become a part of people’s life. To some 
extent, mobile client and its usage data could 
be a natural candidate to support and eventu-
ally host a user’s digital representative [1]. To 
be more specific, attributes of a mobile client 
that operators always concern include model, 
price, and features convincingly depicting cha-
racteristics of a group of users as traditional 
personal information, such as age, sex, occu-
pation, etc. Moreover, capabilities of a mobile 
client give a remarkable impact on experience 
and user’s desire of given application. There-
fore, it is a new challenge as well as opportu-
nity for mobile network operators and ISPs to 
understand attributes and capabilities of their 
customers’ mobile clients and associated be-
haviour patterns for designing more efficient 
market promotion and achieving better user 
experience. 

As a critical step to address this challenge, 
it is imperative to extract mobile client models 
from massive network data. Unfortunately, 
there is little well done work that can help mo-
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 bile operators and ISPs to finish this job. To 
this end, we take the first step to analysis 
HTTP accessing records from mobile client 
perspective with massive amounts of web traf-
fic data collected from one of the leading mo-
bile networks in China. Then we propose a 
novel and scalable Jaccard-based [2] learning 
method for mobile client model recognition. 
Objective of this method is to identify a proper 
keyword that represents a mobile device 
model from unformatted textual headers of 
accessing logs. It is designed as a three stages 
method. The first stage is to extract all key-
words that are possibly to be the right descrip-
tion of a device model. The second stage is 
responsible for decreasing the computing 
workload through filtering candidate key-
words by evaluation of conditional probability 
value between each keyword and device mo-
del. Finally, Jaccard coefficient index is cal-
culated with statistical parameters in above 
stages and the right keyword with highest Jac-
card index is selected to represent a device 
model in the last stage. To meet the require-
ments of performance and scalability for han-
dling billions of data record, we designed a set 
of parallel algorithms and leverage MapRe-
duce framework [3] to implement this method 
as a system named Mobile Device Recogniser 
(MODER). Implementation of this method got 
a remarkable recognition accurate rate with 
evaluation of real network traffic data. More-
over, the parallel algorithms design of Jac-
card-based learning method could be a practi-
cal reference for similar research work on 
massive network data analysis. 

The remainder of this paper is organised as 
follows. Section II describes more details about 
background of mobile device recognition pro-
blem and related work. Section III presents a 
mathematic definition of the problem we ad-
dressed and introduces the overview of our 
solution. Section IV illustrates the detailed 
parallel algorithm design and implementation 
of our method. Section V describes datasets 
and metrics we used for evaluating the accu-
racy and performance of this method. We also 
present empirical evaluation result in this sec-

tion. We conclude with a summary and direc-
tion for future work in Section VI. 

II. BACKGROUND AND RELATED WORK 

With the high penetration rate of mobile de-
vices and increasing number of fancy mobile 
applications, mobile devices are becoming ind-
ispensable to our daily lives. To best sever their 
customers, mobile operators, ISPs and applica-
tion developers need to have a better under-
standing of capabilities of mobile devices held 
by customers. For example, WLAN offloading 
is a good technology for mobile operators to 
improve the service level of cellular data net-
works. To plan the WLAN access point in a 
given area, detailed WLAN capabilities in-
formation of mobile devices that are active in 
this area is important. It is a prior requirement 
for this work to derive information of mobile 
devices by recognising the model and associ-
ated capabilities. Another requirement comes 
from the marketing division of a leading mo-
bile operator in China. They have noticed that 
the traditional region definition catalog (air-
port, bus station, etc.) became unreliable to 
represent business value of users that came out 
in these regions. A proposed alternative defini-
tion is to estimate users’ business value based 
on their mobile devices, registered services, 
and related behaviours. A set of this kind of 
requirements push device model recognition 
in network side to be an emerging task. There-
fore, recognising model of mobile devices be-
comes a critical prerequisite for many tasks in 
network management, service provisioning, 
and market promotion. 

The issue of recognising mobile devices 
was first addressed by research work for adap-
tive delivering web content to mobile devices. 
At first, web developers try to retrieve dev-
ices’ capabilities from User-Agent Request 
Headers (said UA) [4] and Accepted Request 
Headers encapsulated in HTTP requests. It left 
some best practice experience on how to get 
important features that web developers care 
about, such as browser, operation system, 
character set, and so on. It is an excessive and 
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 inefficient work for web developers to handle 
various HTTP request formats and changing 
capabilities set. To ease this kind of work, 
standard organization formed two specifica-
tions. The first one is the standard of Compos-
ite Capabilities/Preferences Profiles (CC/PP) 
which comes from World Wide Web Consor-
tium [5]. CC/PP defines a standard that allows 
mobile devices to transmit their configuration 
and capabilities to web services carried in a 
universal profile. Another standard-based way 
to identify mobile devices is leveraging User 
Agent Profile (UAProf) [6] which is a specific 
CC/PP dictionary defined by Open Mobile 
Alliance. It specifies solution that can be used 
to describe mobile devices capabilities and sup-
port effective configuration content transition 
via speed-limited wireless network. A mobile 
device conformed UAProf will send a URL 
that linked to its XML format capabilities pro-
file conveyed in HTTP request to server. The 
server could get device information by ac-
cessing this URL and parsing received content. 
Compared to CC/PP, UAProf is likely a server 
oriented solution decreasing transmitting con-
tent size to adapt slow wireless network. 

Limitation of above two standard specifica-
tion based ways to retrieve mobile devices inf-
ormation comes from market diversity. A lot 
of mobile devices do not follow these specifi-
cations. To solve this problem, an open source 
project Wireless Universal Resource File 
(WURFL) [7] came out. WURFL turns its dir-
ection back to the UA-based devices recogni-
tion approach because of UA’s rich information 
about mobile devices characteristics. WURFL 
enables web servers to recognise the brand and 
model of an accessing device by matching the 
UA content with a predefined configuration 
file. It enhanced the ability of handling diver-
sity unconfirmed mobile devices. In Ref. [8], 
the author used WURFL to recognise the mul-
timedia capabilities of mobile device for pla-
ying appropriate mobile learning multimedia 
elements. Another example is Ref. [9] in which 
the author combined the XML mobile device 
database of WURFL with the popularity met-
rics of those devices from Google Trends to 

estimate the market share of each mobile de-
vice. Due to fast evolution of mobile devices 
and unpredictable application content format, 
the accuracy of device recognition remains 
low in today’s continuously changing market 
that we will show detail data in the evaluation 
section. 

As the protocol segment of identifying the 
devices and containing configuration details 
about the browser, operating system and other 
hardware and software information, UA brings 
enough data to recognise mobile devices. But 
because there is no unified format for web 
applications to compose it, UA data seems like 
unstructured data to be processed. That is why 
method like WURFL could not get high accu-
racy rate of recognising devices by directly 
matching captured UA with predefined UA. 
Figure 1 shows part of textual UA records for 
Nokia5320 in a set of HTTP accessing records 
captured from mobile network. Based on the 
study of these records, we observed the fol-
lowing: 

1) The TAC code (such as “35570402” in 
r1, r2, and r3), which represents the mobile dev-
ice model, could be retrieved from the first 
eight number of IMEI in the record [10]. Each 
TAC is an exclusive code for device model 
which is allocated by GSM Association 
(GSMA). 

2) Model of mobile device (such as “No-
kia5320” in r1 and r2), the key information of 
a device, is included in UA as well as other 
information, such as browser and operating 
system. 

3) UAs generated by different applications 
are not uniformly formatted. Both sequence of 
segments and composition styles of a single 
segment (such as “Nokia5320” in r2 vs. “No-
kia5320” in r3) are various. 

4) Unstructured textual UA is non-meani-
ngful without manual knowledge. And there is 
no sign that could be used to identify possible 
keyword of device model from disordered mix 
data. 

Above findings lead us to a statistic app-
roach to recognise mobile device models from 
massive network traffic data. Unlike previous 
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Fig.1 HTTP accessing records in mobile network 
 
simple solutions that focus on defining and 
retrieving predefined information from single 
device, we have on our hands a hard problem 
of matching free-text descriptions of mobile 
devices to their models for which it is desir-
able to have an algorithmic solution. That is 
what we presented in this paper. The first step 
of our solution is to extract and filter candidate 
keywords that would possibly be the device 
model from unformatted textual UA header. 
And then above keywords are sorted by their 
coefficient values related with the device 
model, which are calculated by a Jaccard-ba-
sed formula. The keyword with the biggest 
Jaccard value is identified as the device model. 
Jaccard measurement [2] is originally used as a 
statistic way for comparing the similarity and 
diversity of sample sets. Due to its simplicity 
and effectiveness compared with other ap-
proaches (Euclidean Distance, Cosine Similar-
ity, Pearson Correlation Coefficient, etc.), it 
becomes one of the most popular similarity 
measurements in information retrieval, docu-
ment clustering, and ontology matching [11-12]. 

MapReduce is an emerging powerful paral-
lel computing model for big data analytics. In 
recent years, it is starting to be used as a scal-
able framework for analysing large volumes of 
network traffic data [13-14]. Moreover, the 
efficient and scalable power from combination 
of MapReduce framework and Jaccard meas-
urement leads some research work on parallel 
similarity coefficient for huge number of enti-
ties. In Ref. [15], Rares et al. introduced how 
to use MapReduce to calculate Jaccard simi-
larity between records to determine whether 
join them as output. Another example is a part 

of the work of the Hadoop-based machine 
learning framework Mahout [16], which had a 
similarity computation component for item 
recommendation. Above works have relied on 
the presence of some attribute values belong-
ing entities (column of database records, item 
score from users), and the goal is to find simi-
lar entities in record level to link them. This 
assumption is not valid in our case which is to 
find a proper keyword from multiple candi-
dates to represent a device model. In this paper, 
we designed an efficient staged parallel algo-
rithm to disambiguate unclear relations be-
tween keywords and device models from bil-
lions of data records. 

III. PROBLEM STATEMENT AND 
SOLUTION 

The original dataset to be processed is a mas-
sive number of HTTP accessing records, which 
are represented as a set S={<r1(t), r1(u)>,…, 
<ry(t), ry(u)>}. Size of the set S is y, the num-
ber of records. Each record s∈S is composed 
by an attribute pair TAC and UA, which are 
denoted as r(t) and r(u) respectively. The uni-
verse of all TAC is defined as T={t1, t2,…, tM}. 
All UAs compose the set U={u1, u2,…, uL}. 
Each UA is a free-text description that con-
tains characteristic keywords of a mobile de-
vice. Keywords extracted from all UAs com-
pose the universe represented as K={k1, k2,…, 
KN}. Our objective is to find out a proper 
keyword kj∈K that could represent a ti∈T 
which is the model of a mobile device. Based 
on above definitions, our solution could be 
described as follows: 
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 Step 1. Keywords Extracting: The first 
issue we address is how to extract characteris-
tic keywords of a mobile device from un-
structured textual UA. After this step, each 
record <ti, ul> is translated to a set of attribute 
pairs <ti, kj> and each kj is a part of ul. Thus, 
we get the universe containing X pieces of re-
cords, R={<r1(t), r1(k)>,…, <rX(t), rX(k)>}. The 
size of R depends on the complexity of UA 
string in records. 

Keyword extraction is well understood in 
web search, information retrieval and docu-
ment analysis communities. According to loose 
guideline of standard specification [4], format 
of the UA filed in HTTP request is a list of 
product tokens with optional comments. By 
convention, multiple product tokens are listed 
in order of their significance for identifying 
the application. And the product tokens and 
optional comments are organised and broken 
by some reserved formatting letters. Therefore, 
we take a rule-based heuristic keyword extrac-
ting method to achieve comprehensive capa-
bility for retrieving unpredictable keywords. 

Moreover, with the extracting work of key-
words, the joint probability of ti and kj, which 
will be used in following steps, could be com-
puted as follows: 

1

( , )

( ), ( ) , if  ( ) & ( )

i j

x x x i x j

X

x

P t k

r t r k r t t r k k

y
=

< > = =
=
∑

(1)
 

In Eq. (1), the denominator y is the number of 
total records. And the numerator is the number 
of records whose TAC equals ti and keywords 
contain kj. 

Step 2. Candidate Filtering: For each ac-
cessing record, output of Step 1 is a set of at-
tribute pairs <ti, kj>. Considering a given ti, 
there are multiple related jk  that make up the 
set K′={k1, k2,…, kn}. The size n of K′ could be 
large because of various and rich content of 
UA generated by continuously changing ap-
plications with unpredictable behaviour in 
massive network data environment. That will 
produce a remarkable heavy computing work-
load for the following step. That is the reason 

why candidate filtering step is required to save 
the computing resources and decrease the 
processing time. We defined a parameter cn to 
limit the size of candidate keywords set. Ob-
jective of this step is to generate a small set 
Ks={k1, k2,…, kcn}⊆K′. To accomplish this 
task, we design a filter with two stages, dic-
tionary filter and correlation weight filter. In 
the first stage, all keywords pass a domain 
knowledge based dictionary filter and key-
words unrelated with device model are re-
moved. The user-defined dictionary, which 
can be customised, contains predefined gen-
eral words that stand for well-known concepts, 
such as “linux”, “android”, “symbian”, etc. 
Next, the key of the second stage is the meas-
urement of correlation between keyword and 
device model. We take a probabilistic ap-
proach to find out the correlation. The condi-
tional probability value of each keyword 
P(kj|ti) is defined as the correlation weight 
between kj and ti. It could be calculated by the 
following formula: 

 ( ) ( , )( | )
( ) ( )

i j i j
j i

i i

P t k P t kP k t
P t P t
∩

= =  (2) 

Notice that we have calculated the joint 
probability P(ti, kj) as Eq. (1) in the last step. 
The only part P(ti) we need to get the correla-
tion weight could be computed as follows: 

 1
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P(ti) is the probability of ti. We could compute 
it by adding numbers of original data records 
<rx(t), rx(u)>, whose TAC rx(t) equal ti, div-
ided by total records number y. 

Keywords passing the first stage are sorted 
by their correlation weight and top cn key-
words are selected as candidate keywords. Def-
ining cn is a tradeoff between recognition ac-
curacy and computing complexity. Computing 
complexity would be decreased with smaller 
cn, meanwhile possibility of losing right device 
model word would be increased. We find a 
proper value for cn by experiment and get a sat-
isfied result, which will be shown in Section V. 
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Fig.2 Overall process of our solution 
 

Step 3. Coefficient Computing: After prior 
steps, we get cn attribute pairs <ti, kj> for each 
ti. The complete universe that contains y pie-
ces of record is a set R′={<r1(t), r1(k)>,…, 
<rY(t), rY(k)>}. The size of R′ is Y=y×cn. All 
ti compose the set T={t1, t2,…, tM} and all kj 
compose the set K={k1, k2,…, kN}. It should be 
noticed that the size of K, said N, is not equal 
to cn times M, which is the size of T. The rea-
son is there could be duplicate kj in different 
attribute pairs <ti, kj>. For example, there are 
duplicate “Nokia5320” in two attribute pairs 
for r1 and r2 in Figure 1. The problem to be 
solved in this step is to identify the right kj that 
could represent ti. It falls in the topic of coef-
ficient measurement of two concepts ti and kj. 
Many practical coefficient measures can be 
defined based on the joint distribution of two 
concepts. For this problem, a possible defini-
tion for the coefficient measurement between 
device model and keyword is: 

( )Jaccard_cof ( , )
( )

( , )
( ) ( ) ( , )

i j
i j

i j

i j

i j i j

P t kt k
P t k
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∩
=

∪

=
+ −
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This coefficient measure is known as Jac-
card coefficient [2]. It took the lowest value 0 
when ti and kj were irrelevant and the highest 
value 1 when ti and kj were of the same con-
cept. Probabilities of P(ti, kj) and P(ti) are al-

ready computed as Eqs. (1) and (3) in Step 2. So 
we only need to calculate the left required 
probability value P(kj) as follows: 

 1
( ), ( ) , if  ( )

( )
x x x j

j
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x
r t r k r k k

P k
y

=

< > =
=
∑
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P(kj) is the probability of kj. In Eq. (5), the 
denominator y is the number of total records. 
And the numerator is the number of records 
whose keywords contain kj. 

Based on this approach, the matching task 
of given ti and kj becomes a two-step work: 1) 
compute the coefficient value of every kj. 2) 
choose the kj with the highest Jaccard_cof va-
lue. Taking these steps for all ti∈T, we will get 
all TAC and device model description keyword 
pairs O={<t1, k1>,…,<tM, kM>} consequently. 

With this unsupervised learning method, we 
implement a mobile devices recognition sys-
tem named MODER. The overall process and 
architecture of MODER is shown in Figure 2. 
In the next section, we will describe the de-
tailed information of how it is implemented in 
a distributed parallel computing environment. 

IV. PARALLEL ALGORITHM DESIGN 

We now describe the parallel algorithm design 
of MODER in detail. The basic architecture of 
this system is shown in Figure 2. It consists of 
three main modules: Keyword Extractor (KE), 
Candidate Filter (CF), and Coefficient Com-
puter (CC). 

The KE takes original input records as in-
put, together with TAC and UA string. It ap-
plies rule-based KE and outputs attribute pair 
set R. Next, MODER feeds R to the CF, which 
applies dictionary filtering and correlation 
function to select first cn pairs of attributes. At 
last the CC takes the coefficient function to 
identify the keyword kj that best satisfies the 
highest coefficient value with ti. All matching 
pairs set O is the final output of MODER. 

In the remainder of this section, we provide 
an introduction to the MapReduce paradigm 
and present the parallel implementation of 
above three main components. 
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 4.1 MapReduce framework 

The dataset needs to be processed has more 
than 2 billion records. This kind of situation dri-
ves us to find a proper parallel computing sol-
ution to handle such a huge dataset. After the 
survey of some possible technologies includ-
ing parallel DBMS and MPI, we choose the 
MapReduce programming model due to its im-
pressive high efficiency and low cost charac-
teristics. 

MapReduce is a powerful programming mo-
del designed for data-intensive parallel com-
puting in shared-nothing cluster environment 
with up to thousands of low-cost commodity 
computing nodes. A MapReduce application 
consists of a sequence of stages that transfor-
ms a set of input data into a set of output data. 
A stage is composed by a set of operation fun-
ctions named map or reduce. Data is represen-
ted as (key, value) pairs and the user defined 
“map” or “reduce” computation is expressed as: 

map: (k1, v1)      → list(k2, v2) 
reduce: (k2, list(v2))   → list(k3, v3) 
Figure 3 shows an example data flow in a 

MapReduce program. The input data is parti-
tioned to data splits that are feed into different 
maps. A map receives a set of inputs as key- 
value pair (k1, v1) and produces a set of out-
puts in the form list (k2, v2). In this phase, the 
map functions are applied in parallel on dif-
ferent data splits. And the computation in each 
map is stateless that every output depends 
only on the current input. After that, the output 
<k2, v2> pairs by each map function are hash- 
partitioned on the key. Then, they are sent to 
the reduce node after being merged in a sorted 
order by the key. That means all the pair values 
with the same key will be processed in a single 
reduce node. Reduce function applies a user def-
ined processing logic on each <k2, list(v2)> and 
produces output data <k3, v3>. The final result 
which is typically a list of values comes from the 
aggregation of all output pairs of reduce nodes. 

The actual execution of a MapReduce prog-
ram is supported by a MapReduce runtime fram-
ework implementation such as Apache Hadoop 
[17]. The MapReduce program is scheduled 
and executed by specified number of map tasks 

 

 
 

Fig.3 Data flow in MapReduce program 
 

 
 

Fig.4 Data flow in KE 
 

and reduce tasks with allocated computing res-
ources. Furthermore, the MapReduce frame-
work provides more powerful capabilities, such 
as combine function, customizable hashing and 
partitioning functions, to support flexible data 
processing and algorithm implementation. 

4.2 Keyword Extractor (KE) 

KE takes the responsibility of first stage com-
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 putation, extracting all possible keywords from 
UA string in records and counting the number 
of each <ti, kj> pair appearing. Data flow of this 
stage is shown as Figure 4. 

To make our description clear and simple, 
we use number 1 and 2 to represent the eight 
digits TAC, and letters to represent the key-
words, for example a, b, etc. The map function 
gets input as the original HTTP accessing log 
records including TAC, UA and other seg-
ments. For each record, the function extracts 
the value of TAC and cuts the UA string to a 
set of keywords according to the guideline of 
specification [4]. Other useless segments in a 
record for device model recognition are dis-
carded by this function. At the end of map 
function, a set of attribute pairs (<ti, kj>, 1) is 
emitted. The key of output data is <ti, kj>, and 
the value is 1 for the following counting work. 
The map function of KE is introduced in Al-
gorithm 1. 
 

Algorithm 1 Map function of KE 
Input:   Key: orgFileName  Value: fileContent 
Output:  Key: <ti, kj>    Value: 1 
1  for each line in fileContent 
2   tac=getTAC(line) 
3   ua=getUA(line) 
4   while ua not empty 
5    keyword=getKeyword(ua, rule) 
6    ua=ua.remove(keyword) 
7    key=<tac,keyword> 
8    Emit(key, 1) 
9   end while 
10 end for 

 

Output pairs of above map function are gr-
ouped by their key and sent to corresponding 
reduce node. Subsequently, the reduce func-
tion computes the total count for each key and 
value pairs and generates all possible <ti, kj> 
pairs and their appearing count count_<ti, kj> 
in all records. The reduce function of this step 
is shown in Algorithm 2. 
 

Algorithm 2 Reduce function of KE 

Input:   <<ti, kj>,list(1)> 
Output:  <<ti, kj>,count_<ti, kj>> 
1  count=0 
2  for each item in list(1) 
3    count++ 
4  end for 
5  Emit(<ti, kj>, count) 

From the description of coefficient com-
puting in previous section, we know that all 
possibility value is calculated through a condi-
tional count number divided by the total re-
cords number y. Therefore, we could eliminate 
y in our computation and take the count num-
ber to represent the possibility value in the 
following description. After KE finished its 
reduce work, we get all <ti, kj> pairs and 
P(ti, kj)=count_<ti, kj>, which are stored in a 
file fileKE. 

4.3 Candidate Filter (CF) 

Recall Step 2, CF in Section III, we take a 
staged approach to remove unrelated and low 
possibility keywords with device models. For 
the first stage, we build a domain knowledge ba-
sed dictionary to remove unrelated keywords. 
We will not go into detail for this straightfor-
ward method and just leave it on below ps-
eudo code. Key point of the second stage is sor-
ting keywords based on their conditional pro-
bability P(kj|ti). From formula of conditional 
probability, we get the following: 

 ( , ) count _ ,( | )
( ) count _
i j i j

j i
i i

P t k t kP k t
P t t

< >
= =

< >
 (6) 

In KE, we already get the count_<ti, kj>. 
For various kj with a given ti, the count_<ti> is 
obvious the same. So we could use count_ 
<ti, kj> as the weight for keywords sorting. 
Data flow of the whole CF process is shown in 
Figure 5. An MapReduce process named MRPt 
is needed is to compute count_<ti> represen-
ting P(ti) for the following computation. And 
then another MapReduce process following 
MRPt named MRCF takes the work of select-
ing keywords by sorted conditional probabilities 
as well as dictionary-based filtering. As an exa-
mple, we define the parameter of candidate num-
ber cn as 2. 

The map function of MRPt MapReduce 
process tags the record projections with their 
TAC segment. Thus the reduce function re-
ceives a list of record projections grouped by 
TAC and counts all number within records 
with the same ti, which is count_<ti> that we 
need to compute P(kj|ti). 
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 Unlike just counting work in previous Map-
Reduce processes, the logic of MRCF is with 
some kind of complication. Problems to be sol-
ved in MRCF is how to handle multiple diff-
erent format files and link related items toget-
her for composing a complete record (P(ti, kj) 
and P(ti) sharing the same ti) for further com-
putation on a parallel behaviour. We use two 
advanced MapReduce technologies to meet the-
se requirements, MultipleInputs and Reduce- 
side Join, which are explained in Algorithm 3. 
 

Algorithm 3 Map function for fileMRPt 

Input:   Key: fileMPRt   Value: fileContent 
Output:  Key: <ti, 0>      Value: count_<ti> 
1  for each line in fileContent 
2   tac=getTAC(line) 
3   count=getCount(line) 
4   key=<tac, 0> 
5   Emit(key, count) 
6  end for 

 

Besides map function illustrated in Algori-
thm 3, we have another independent map fun-
ction for fileKE shown in Algorithm 4. 
 

Algorithm 4 Map function for fileKE 

Input:  Key: fileKE   Value: fileContent 
Output: Key: <ti,1>   Value: <kj, count_<ti, kj>> 
1  for each line in fileContent 
2    tac=getTAC(line) 
3    keyword=getKeyword(line) 
4    count=getCount(line) 
5    key=<tac, 1> 
6    value=<keyword, count> 
7    Emit(key, value) 
8  end for 

 

MapReduce MultipleInputs allows devel-
opers to specify different map functions for 
different files. Thus, we develop two map 
functions to handle fileMRPt and fileKE. Key 
of the output of these two map functions is 
differentiated by a tag (0 or 1) appending with 
ti. The tag is used by the following reduce fun-
ction to identify whether a record contains co-
unt_<ti> or count_<ti, kj>. Recall the introdu-
ction of MapReduce programming model in 
this section, it seems we break the rule that 
keys of records computing in the same reduce 
function should be the same. After we intro-
duce the tag into key, output pairs of map 

 

 
 

Fig.5 Data flow in CF 
 

function what we want to link together in the 
same reduce function have different keys even 
their ti is same. This problem is solved by our 
customised Partitioner class and TextPair. First-
Comparator class. Therefore, the Reduce-side 
Join is successfully accomplished by the fol-
lowing reduce function: 
 

Algorithm 5 Reduce function of MRCF 

Input:   <<ti, tag>, list(value)> 
Output:  <<ti, kj>,< kj, count_<ti, kj>> 
1   tac=getTAC(<ti, tag>) 
2   count_t=popFirstItem(list(value)) 
3   while list(value) not empty 
4     item=popFirstItem(list(value)) 
5     keyword=getKeyword(item) 
6     count_t_k=getCount(item) 
7     key=<tac, keyword> 
8     value=<count_t_k, count_t> 
9     Emit(key, value) 
10  end while 

 

After working of CF, we get a set of four 
attributes pairs <ti, kj, P(ti, kj), P(ti)> stored in 
a file fileCF. 

4.4 Coefficient Computer (CC) 

With previous computed attribute pairs <ti, kj, 
P(ti, kj), P(ti)>, the only missing part is P(kj) 
to fulfill the computation of Jaccard coefficient 
value. For this, we take the fileKE as input of 
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Fig.6 Data flow in CC 
 

 
 

Fig.7 UMTS network architecture 
 

 
 

Fig.8 Segment of device model repository 
 
MapReduce process MRPk to count number of 
all kj. The map function of MRPk retrieves key-
word from each record and emits key-value 
pairs <kj, P(kj)>. Then the MultipleInputs and 

Reduce-side Join are used again to compose 
full possibility values <ti, kj, P(ti, kj), P(ti),P(kj)> 
for computing Jaccard_cof. Data flow of CC, 
which is shown as Figure 6. 

The two map functions for fileMRPk and 
fileCF are similar to Algorithms 3 and 4 with a 
little difference on preparing data for appe-
nding P(kj) to <ti, kj, P(ti, kj), P(ti)>. Here we fo-
cus on the reduce function to see how is the 
final Jaccard_cof value produced, which is 
described as Algorithm 6. 
 

Algorithm 6 Reduce function of MRCC 

Input:   << kj, tag>, list(value)> 
Output:  <<ti, kj>,Jaccard_cof> 
1   keyword=getKeyword(<kj, tag>) 
2   count_k=popFirstItem(list(value)) 
3   while list(value) not empty 
4     item=popFirstItem(list(value)) 
5     tac=getTAC(item) 
6     count_t_k=getCount_t_k(item) 
7     count_t=getCount_t(item) 
8     jac=count_t_k/(count_t+count_k-count_t_k) 
9     Emit(<tac, keyword>, jac) 
10  end while 

 

Finally, we have a file containing records 
dictionary ordered by <ti, kj>. The list com-
posing by the highest Jaccard_cof value is the 
output list of device models. For our example 
case, words that represent the two sample de-
vices are b for TAC 1 and d for TAC 2. 

V. EVALUATION OF REAL-WORLD 
DATA 

The central goal of our work is to develop a 
functional system that can be de deployed in a 
real mobile network operation environment to 
recognise device models. The critical require-
ements for us are being able to recognise at 
least 90% captured records and achieve 85% 
above accuracy rate. Generally speaking, this 
is a tall order for any existing solution to sat-
isfy. Sources of difficulty to meet above re-
quirements mainly come from the huge size of 
records and disordered textual data. More than 
2 billion accessing records with mixing appli-
cation and unstructured format prevent recog-
niser from performing analysis effectively and 
affect the learning of the model identification 
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 function. In this section, we will show the exp-
eriments we conducted to evaluate how we 
meet above critical requirements. 

5.1 Dataset and recognition result 

The experimental dataset to be processed is 
captured from a living Universal Mobile Tel-
ecommunication System (UMTS) network [18] 
of a leading mobile network operator in China. 
Key components of the monitoring system and 
MODER system what we developed for dev-
ice model recognition are illustrated in Figure 7. 

A mobile device directly talks with a cell 
tower (node-B) which forwards its voice or data 
traffic to a Radio Network Controller (RNC). 
In case of mobile data service, the RNC deliv-
ers the data service request to a Serving PRS 
Support Node (SGSN) that establishes a tun-
nel on Gn interface with a Gateway GPRS 
Support Node (GGSN) through which the data 
enters the IP network. 

Data is collected from a large UMTS net-
work for five days with the size of 2.2 billion 
records. This dataset includes: 1) IMEI, which 
indicates the unified identity of a mobile de-
vice; and 2) User-Agent field of HTTP request, 
which is produced by mixed applications ac-
cessing data services. It is captured by the 
operator through Traffic Monitoring System 
(TMS) and stored in a log database for system 
experimental evaluation. Given the sensitivity 
of the data, privacy related information is re-
moved by the Uploader component when it 
transmits logs to the distributed file system of 
experimental platform. And all our results sto-
red in the Device Model Repository which is 
produced by the MODER system are presen-
ted as aggregated report to protect the privacy 
of individuals. 

Part of example result we recognised from 
the experimental dataset is shown in Figure 8. 
MODER system takes first 90% records with 
TAC sorted by appearing number as input and 
achieve 91.5% accuracy rate of device model 
recognition. Results are stored in a RDBMS 
maintained device model repository in which 
additional recognition set will be incremen-
tally inserted with accumulated uploading logs. 

 

 
 

Fig.9 Accuracy rate of various cn 
 

From the example result shown in Figure 8, 
we can see that our algorithm can accurately 
recognise unusual situations. For example, there 
are multiple TACs belonging to one device mo-
del (iPhone), which are different with normal 
one-on-one matching scenario (nokia and zte). 

5.2 Study of algorithm variant cn 

Definition of accuracy rate is the radio of the 
sum of all correctly recognised mobile device 
models to the sum of all models residing in 
testing data records. This metric is the most 
important parameter to evaluate the practical 
value of a recognition method.  

Before we evaluate the accuracy rate of our 
method, we study the variable parameter cn 
that limits the size of candidate keywords set 
in Step 2 of our method. We randomly extract 
2 billion records from the total set in 3 times 
to get 3 record sets. Then, the system MODER 
is executed on these 3 record sets with various 
parameter cn from 1 to 10. The number of all 
device models for each record set is calculated 
by summing the count of TAC numbers, 
which is the same value 1944 for above record 
sets. Recognised result is evaluated manually 
by identifying if each recognised model word 
is an existing mobile device model. Accuracy 
rate of each cn is the average value of 3 record 
sets. Result is shown in Figure 9. 

From Figure 9, we can see that the accuracy 
rate is increasing with the rising of cn value. 
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Fig.10 Accuracy rate evaluation 
 

 
 

Fig.11 Speedup evaluation 
 
The accuracy rate becomes relatively stable 
from 7 and reaches the highest value 91.5% on 
8. After 8, the accuracy rate is slightly dropped 
(around 0.1%) by few incorrect matching 
words entering Step 3 with loose number limit. 
According to the result of this experiment, we 
choose 8 as the value for cn. 

5.3 Accuracy rate evaluation 

As the most widely used solution by server log 
analyser and application developer for mobile 
client recognition, WURFL [7] is taken as a 
comparator for accuracy rate evaluation in our 
experiment. To study the accuracy rate of our 
method in different data sizes, we randomly 
select 7 different sizes of data records, 10 tho-
usand to 2 billion respectively. For each size, 
we take three times random selection. Then, 

our method and WURFL based program 
are executed on all 21 datasets. Final accuracy 
rate value for each size is calculated as the 
average accuracy rate of 3 datasets. The result 
is shown as Figure 10. It should be noticed that 
we only compare the accuracy rate of MODER 
with WURFL instead of performance evalua-
tion because the WURFL is not a parallelized 
method. 

As a string matching approach, the accu-
racy rate of WURFL remains respectively sta-
ble around 12%. The reason for such a low 
accuracy rate is UA fields in records are gen-
erated by both web browsers and applications 
running on http protocol with unpredictable 
behaviour. Even for records from web brows-
ers, WURFL cannot recognise them very well 
because of fast evolution of browsers version, 
which brings fast changing of http header con-
tent. It is the natural defect of string matching 
based method. 

From Figure 10, we can see that the accu-
racy rate of our method is increasing with the 
growing size of datasets. We get 91.5% accu-
racy rate finally which exceeds the critical requi-
rement 85%. According to some study on mat-
ters of dataset size for accuracy rate of statis-
tical learning method [19], we can expect our 
method to achieve higher accuracy recognition 
if MODER accumulates more http accessing 
records. 

5.4 Speedup evaluation 

Speedup is the key parameter that is used to 
evaluate the efficiency of a parallel algorithm. 
To evaluate speedup of our method, we choose 
the dataset with fixed size of 1 billion records. 
The number of Hadoop cluster nodes is chan-
ged as 1, 2, 4, and 6 to study the execution 
time for recognising work. The y-axis of Fig-
ure 11 is the speedup value which is calculated 
by the execution time of changing number of 
nodes scenarios divided by the execution time 
of 1 node scenario. The dash line indicates the 
ideal speedup in this relative scale. The ideal 
speedup should mathematically be a linear 
speedup that means doubling the number of  



 
 

  

China Communications • July 2013 83 

 computing nodes doubles the processing speed. 
From the result, we can see that our method 
approaches closely to linear speedup. The rea-
son for not matching the ideal speedup is that 
extra workload of data I/Os, task scheduling, 
and communications between “map” and “re-
duce” nodes do not speed up linearly, which 
are internal mechanism residing in Hadoop 
MapReduce execution environment. Although 
our parallel algorithm on larger data sets tends 
to speed up slower than the linear speedup, the 
total execution times, which are 33 m 53 s and 
1 h 9 m 31 s for computing 1 billion and 2 bil-
lion data records respectively, satisfy the per-
formance requirement as a batch processing 
program running over only 6 working nodes. 

VI. CONCLUSION AND FUTURE WORK 

In this article, we designed a Jaccard-based lear-
ning method as a solution to recognise mobile 
device model from massive network traffic 
data. Utilizing a staged architecture, our method 
decomposed the recognition task into multiple 
subtasks including keyword extracting, candi-
date filtering, and coefficient computing. To 
achieve critically high recognition accuracy rate, 
high volumes of accessing records are requi-
red as input to the recognition system. There-
fore, a set of parallel algorithms are designed 
and implemented on MapReduce framework 
for each stage. Through extensive experiments 
using real world data, we demonstrated that 
our system achieved an accuracy rate of 91.5%, 
which is dramatically higher than existing sol-
ution. Furthermore, we evaluated that our par-
allelization method is scalable for processing 
more traffic data to get better recognition result. 

As future work, aside from continually str-
iving to improve the accuracy of the method, 
our work will extend to build an automatically 
accumulating solution for a complete reposi-
tory covering all captured mobile device mod-
els. Another line of future research work in-
volves studying user behaviours from device 
model’s perspective by leveraging our recog-
nition results. 
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