

China Communications • July 2013 71

NETWORK TECHNOLOGY AND APPLICATION

Parallelized Jaccard-Based Learning Method and
MapReduce Implementation for Mobile Devices
Recognition from Massive Network Data

LIU Jun1, LI Yinzhou1, Felix Cuadrado2, Steve Uhlig2, LEI Zhenming1
1Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications,
Beijing 100876, China
2Department of Electronic Engineering and Computer Science, Queen Mary, University of London, London E1 4NS, UK

Abstract: The ability of accurate and scalable
mobile device recognition is critically impor-
tant for mobile network operators and ISPs to
understand their customers’ behaviours and en-
hance their user experience. In this paper, we
propose a novel method for mobile device model
recognition by using statistical information
derived from large amounts of mobile network
traffic data. Specifically, we create a Jaccard-
based coefficient measure method to identify a
proper keyword representing each mobile de-
vice model from massive unstructured textual
HTTP access logs. To handle the large amount
of traffic data generated from large mobile
networks, this method is designed as a set of
parallel algorithms, and is implemented through
the MapReduce framework which is a distrib-
uted parallel programming model with proven
low-cost and high-efficiency features. Evalua-
tions using real data sets show that our method
can accurately recognise mobile client models
while meeting the scalability and producer-ind-
ependency requirements of large mobile net-
work operators. Results show that a 91.5% acc-
uracy rate is achieved for recognising mobile
client models from 2 billion records, which is
dramatically higher than existing solutions.

Key words: mobile device recognition; data
mining; Jaccard coefficient measurement; dis-
tributed computing; MapReduce

I. INTRODUCTION

With increasing popularity of user-friendly mo-
bile clients (smartphones, pads, and tablets),
which are coupled with capable mobile appli-
cations (location-aware, multimedia, and so-
cial applications) supported by advanced cel-
lular communication technology, mobile cli-
ents become a part of people’s life. To some
extent, mobile client and its usage data could
be a natural candidate to support and eventu-
ally host a user’s digital representative [1]. To
be more specific, attributes of a mobile client
that operators always concern include model,
price, and features convincingly depicting cha-
racteristics of a group of users as traditional
personal information, such as age, sex, occu-
pation, etc. Moreover, capabilities of a mobile
client give a remarkable impact on experience
and user’s desire of given application. There-
fore, it is a new challenge as well as opportu-
nity for mobile network operators and ISPs to
understand attributes and capabilities of their
customers’ mobile clients and associated be-
haviour patterns for designing more efficient
market promotion and achieving better user
experience.

As a critical step to address this challenge,
it is imperative to extract mobile client models
from massive network data. Unfortunately,
there is little well done work that can help mo-

Received: 2012-12-12
Revised: 2013-03-11
Editor: YUAN Baozong

72 China Communications • July 2013

 bile operators and ISPs to finish this job. To
this end, we take the first step to analysis
HTTP accessing records from mobile client
perspective with massive amounts of web traf-
fic data collected from one of the leading mo-
bile networks in China. Then we propose a
novel and scalable Jaccard-based [2] learning
method for mobile client model recognition.
Objective of this method is to identify a proper
keyword that represents a mobile device
model from unformatted textual headers of
accessing logs. It is designed as a three stages
method. The first stage is to extract all key-
words that are possibly to be the right descrip-
tion of a device model. The second stage is
responsible for decreasing the computing
workload through filtering candidate key-
words by evaluation of conditional probability
value between each keyword and device mo-
del. Finally, Jaccard coefficient index is cal-
culated with statistical parameters in above
stages and the right keyword with highest Jac-
card index is selected to represent a device
model in the last stage. To meet the require-
ments of performance and scalability for han-
dling billions of data record, we designed a set
of parallel algorithms and leverage MapRe-
duce framework [3] to implement this method
as a system named Mobile Device Recogniser
(MODER). Implementation of this method got
a remarkable recognition accurate rate with
evaluation of real network traffic data. More-
over, the parallel algorithms design of Jac-
card-based learning method could be a practi-
cal reference for similar research work on
massive network data analysis.

The remainder of this paper is organised as
follows. Section II describes more details about
background of mobile device recognition pro-
blem and related work. Section III presents a
mathematic definition of the problem we ad-
dressed and introduces the overview of our
solution. Section IV illustrates the detailed
parallel algorithm design and implementation
of our method. Section V describes datasets
and metrics we used for evaluating the accu-
racy and performance of this method. We also
present empirical evaluation result in this sec-

tion. We conclude with a summary and direc-
tion for future work in Section VI.

II. BACKGROUND AND RELATED WORK

With the high penetration rate of mobile de-
vices and increasing number of fancy mobile
applications, mobile devices are becoming ind-
ispensable to our daily lives. To best sever their
customers, mobile operators, ISPs and applica-
tion developers need to have a better under-
standing of capabilities of mobile devices held
by customers. For example, WLAN offloading
is a good technology for mobile operators to
improve the service level of cellular data net-
works. To plan the WLAN access point in a
given area, detailed WLAN capabilities in-
formation of mobile devices that are active in
this area is important. It is a prior requirement
for this work to derive information of mobile
devices by recognising the model and associ-
ated capabilities. Another requirement comes
from the marketing division of a leading mo-
bile operator in China. They have noticed that
the traditional region definition catalog (air-
port, bus station, etc.) became unreliable to
represent business value of users that came out
in these regions. A proposed alternative defini-
tion is to estimate users’ business value based
on their mobile devices, registered services,
and related behaviours. A set of this kind of
requirements push device model recognition
in network side to be an emerging task. There-
fore, recognising model of mobile devices be-
comes a critical prerequisite for many tasks in
network management, service provisioning,
and market promotion.

The issue of recognising mobile devices
was first addressed by research work for adap-
tive delivering web content to mobile devices.
At first, web developers try to retrieve dev-
ices’ capabilities from User-Agent Request
Headers (said UA) [4] and Accepted Request
Headers encapsulated in HTTP requests. It left
some best practice experience on how to get
important features that web developers care
about, such as browser, operation system,
character set, and so on. It is an excessive and

We introduce a Jac-
card coefficient measu-
rement based mobile
device model recogni-
tion method with par-
allel algorithms and
MapReduce implemen-
tation for automatica-
lly processing billions
of records, which is
demonstrated as an
accurate and efficient
method by evaluation
with massive network
data from cellular core
network.

China Communications • July 2013 73

 inefficient work for web developers to handle
various HTTP request formats and changing
capabilities set. To ease this kind of work,
standard organization formed two specifica-
tions. The first one is the standard of Compos-
ite Capabilities/Preferences Profiles (CC/PP)
which comes from World Wide Web Consor-
tium [5]. CC/PP defines a standard that allows
mobile devices to transmit their configuration
and capabilities to web services carried in a
universal profile. Another standard-based way
to identify mobile devices is leveraging User
Agent Profile (UAProf) [6] which is a specific
CC/PP dictionary defined by Open Mobile
Alliance. It specifies solution that can be used
to describe mobile devices capabilities and sup-
port effective configuration content transition
via speed-limited wireless network. A mobile
device conformed UAProf will send a URL
that linked to its XML format capabilities pro-
file conveyed in HTTP request to server. The
server could get device information by ac-
cessing this URL and parsing received content.
Compared to CC/PP, UAProf is likely a server
oriented solution decreasing transmitting con-
tent size to adapt slow wireless network.

Limitation of above two standard specifica-
tion based ways to retrieve mobile devices inf-
ormation comes from market diversity. A lot
of mobile devices do not follow these specifi-
cations. To solve this problem, an open source
project Wireless Universal Resource File
(WURFL) [7] came out. WURFL turns its dir-
ection back to the UA-based devices recogni-
tion approach because of UA’s rich information
about mobile devices characteristics. WURFL
enables web servers to recognise the brand and
model of an accessing device by matching the
UA content with a predefined configuration
file. It enhanced the ability of handling diver-
sity unconfirmed mobile devices. In Ref. [8],
the author used WURFL to recognise the mul-
timedia capabilities of mobile device for pla-
ying appropriate mobile learning multimedia
elements. Another example is Ref. [9] in which
the author combined the XML mobile device
database of WURFL with the popularity met-
rics of those devices from Google Trends to

estimate the market share of each mobile de-
vice. Due to fast evolution of mobile devices
and unpredictable application content format,
the accuracy of device recognition remains
low in today’s continuously changing market
that we will show detail data in the evaluation
section.

As the protocol segment of identifying the
devices and containing configuration details
about the browser, operating system and other
hardware and software information, UA brings
enough data to recognise mobile devices. But
because there is no unified format for web
applications to compose it, UA data seems like
unstructured data to be processed. That is why
method like WURFL could not get high accu-
racy rate of recognising devices by directly
matching captured UA with predefined UA.
Figure 1 shows part of textual UA records for
Nokia5320 in a set of HTTP accessing records
captured from mobile network. Based on the
study of these records, we observed the fol-
lowing:

1) The TAC code (such as “35570402” in
r1, r2, and r3), which represents the mobile dev-
ice model, could be retrieved from the first
eight number of IMEI in the record [10]. Each
TAC is an exclusive code for device model
which is allocated by GSM Association
(GSMA).

2) Model of mobile device (such as “No-
kia5320” in r1 and r2), the key information of
a device, is included in UA as well as other
information, such as browser and operating
system.

3) UAs generated by different applications
are not uniformly formatted. Both sequence of
segments and composition styles of a single
segment (such as “Nokia5320” in r2 vs. “No-
kia5320” in r3) are various.

4) Unstructured textual UA is non-meani-
ngful without manual knowledge. And there is
no sign that could be used to identify possible
keyword of device model from disordered mix
data.

Above findings lead us to a statistic app-
roach to recognise mobile device models from
massive network traffic data. Unlike previous

74 China Communications • July 2013

Fig.1 HTTP accessing records in mobile network

simple solutions that focus on defining and
retrieving predefined information from single
device, we have on our hands a hard problem
of matching free-text descriptions of mobile
devices to their models for which it is desir-
able to have an algorithmic solution. That is
what we presented in this paper. The first step
of our solution is to extract and filter candidate
keywords that would possibly be the device
model from unformatted textual UA header.
And then above keywords are sorted by their
coefficient values related with the device
model, which are calculated by a Jaccard-ba-
sed formula. The keyword with the biggest
Jaccard value is identified as the device model.
Jaccard measurement [2] is originally used as a
statistic way for comparing the similarity and
diversity of sample sets. Due to its simplicity
and effectiveness compared with other ap-
proaches (Euclidean Distance, Cosine Similar-
ity, Pearson Correlation Coefficient, etc.), it
becomes one of the most popular similarity
measurements in information retrieval, docu-
ment clustering, and ontology matching [11-12].

MapReduce is an emerging powerful paral-
lel computing model for big data analytics. In
recent years, it is starting to be used as a scal-
able framework for analysing large volumes of
network traffic data [13-14]. Moreover, the
efficient and scalable power from combination
of MapReduce framework and Jaccard meas-
urement leads some research work on parallel
similarity coefficient for huge number of enti-
ties. In Ref. [15], Rares et al. introduced how
to use MapReduce to calculate Jaccard simi-
larity between records to determine whether
join them as output. Another example is a part

of the work of the Hadoop-based machine
learning framework Mahout [16], which had a
similarity computation component for item
recommendation. Above works have relied on
the presence of some attribute values belong-
ing entities (column of database records, item
score from users), and the goal is to find simi-
lar entities in record level to link them. This
assumption is not valid in our case which is to
find a proper keyword from multiple candi-
dates to represent a device model. In this paper,
we designed an efficient staged parallel algo-
rithm to disambiguate unclear relations be-
tween keywords and device models from bil-
lions of data records.

III. PROBLEM STATEMENT AND
SOLUTION

The original dataset to be processed is a mas-
sive number of HTTP accessing records, which
are represented as a set S={<r1(t), r1(u)>,…,
<ry(t), ry(u)>}. Size of the set S is y, the num-
ber of records. Each record s∈S is composed
by an attribute pair TAC and UA, which are
denoted as r(t) and r(u) respectively. The uni-
verse of all TAC is defined as T={t1, t2,…, tM}.
All UAs compose the set U={u1, u2,…, uL}.
Each UA is a free-text description that con-
tains characteristic keywords of a mobile de-
vice. Keywords extracted from all UAs com-
pose the universe represented as K={k1, k2,…,
KN}. Our objective is to find out a proper
keyword kj∈K that could represent a ti∈T
which is the model of a mobile device. Based
on above definitions, our solution could be
described as follows:

China Communications • July 2013 75

 Step 1. Keywords Extracting: The first
issue we address is how to extract characteris-
tic keywords of a mobile device from un-
structured textual UA. After this step, each
record <ti, ul> is translated to a set of attribute
pairs <ti, kj> and each kj is a part of ul. Thus,
we get the universe containing X pieces of re-
cords, R={<r1(t), r1(k)>,…, <rX(t), rX(k)>}. The
size of R depends on the complexity of UA
string in records.

Keyword extraction is well understood in
web search, information retrieval and docu-
ment analysis communities. According to loose
guideline of standard specification [4], format
of the UA filed in HTTP request is a list of
product tokens with optional comments. By
convention, multiple product tokens are listed
in order of their significance for identifying
the application. And the product tokens and
optional comments are organised and broken
by some reserved formatting letters. Therefore,
we take a rule-based heuristic keyword extrac-
ting method to achieve comprehensive capa-
bility for retrieving unpredictable keywords.

Moreover, with the extracting work of key-
words, the joint probability of ti and kj, which
will be used in following steps, could be com-
puted as follows:

1

(,)

(), () , if () & ()

i j

x x x i x j

X

x

P t k

r t r k r t t r k k

y
=

< > = =
=
∑

(1)

In Eq. (1), the denominator y is the number of
total records. And the numerator is the number
of records whose TAC equals ti and keywords
contain kj.

Step 2. Candidate Filtering: For each ac-
cessing record, output of Step 1 is a set of at-
tribute pairs <ti, kj>. Considering a given ti,
there are multiple related jk that make up the
set K′={k1, k2,…, kn}. The size n of K′ could be
large because of various and rich content of
UA generated by continuously changing ap-
plications with unpredictable behaviour in
massive network data environment. That will
produce a remarkable heavy computing work-
load for the following step. That is the reason

why candidate filtering step is required to save
the computing resources and decrease the
processing time. We defined a parameter cn to
limit the size of candidate keywords set. Ob-
jective of this step is to generate a small set
Ks={k1, k2,…, kcn}⊆K′. To accomplish this
task, we design a filter with two stages, dic-
tionary filter and correlation weight filter. In
the first stage, all keywords pass a domain
knowledge based dictionary filter and key-
words unrelated with device model are re-
moved. The user-defined dictionary, which
can be customised, contains predefined gen-
eral words that stand for well-known concepts,
such as “linux”, “android”, “symbian”, etc.
Next, the key of the second stage is the meas-
urement of correlation between keyword and
device model. We take a probabilistic ap-
proach to find out the correlation. The condi-
tional probability value of each keyword
P(kj|ti) is defined as the correlation weight
between kj and ti. It could be calculated by the
following formula:

 () (,)(|)
() ()

i j i j
j i

i i

P t k P t kP k t
P t P t
∩

= = (2)

Notice that we have calculated the joint
probability P(ti, kj) as Eq. (1) in the last step.
The only part P(ti) we need to get the correla-
tion weight could be computed as follows:

 1
(), () , if ()

()
x x x i

i

y

x
r t r u r t t

P t
y

=
< > =

=
∑

 (3)

P(ti) is the probability of ti. We could compute
it by adding numbers of original data records
<rx(t), rx(u)>, whose TAC rx(t) equal ti, div-
ided by total records number y.

Keywords passing the first stage are sorted
by their correlation weight and top cn key-
words are selected as candidate keywords. Def-
ining cn is a tradeoff between recognition ac-
curacy and computing complexity. Computing
complexity would be decreased with smaller
cn, meanwhile possibility of losing right device
model word would be increased. We find a
proper value for cn by experiment and get a sat-
isfied result, which will be shown in Section V.

76 China Communications • July 2013

Fig.2 Overall process of our solution

Step 3. Coefficient Computing: After prior
steps, we get cn attribute pairs <ti, kj> for each
ti. The complete universe that contains y pie-
ces of record is a set R′={<r1(t), r1(k)>,…,
<rY(t), rY(k)>}. The size of R′ is Y=y×cn. All
ti compose the set T={t1, t2,…, tM} and all kj
compose the set K={k1, k2,…, kN}. It should be
noticed that the size of K, said N, is not equal
to cn times M, which is the size of T. The rea-
son is there could be duplicate kj in different
attribute pairs <ti, kj>. For example, there are
duplicate “Nokia5320” in two attribute pairs
for r1 and r2 in Figure 1. The problem to be
solved in this step is to identify the right kj that
could represent ti. It falls in the topic of coef-
ficient measurement of two concepts ti and kj.
Many practical coefficient measures can be
defined based on the joint distribution of two
concepts. For this problem, a possible defini-
tion for the coefficient measurement between
device model and keyword is:

()Jaccard_cof (,)
()

(,)
() () (,)

i j
i j

i j

i j

i j i j

P t kt k
P t k

P t k
P t P k P t k

∩
=

∪

=
+ −

(4)

This coefficient measure is known as Jac-
card coefficient [2]. It took the lowest value 0
when ti and kj were irrelevant and the highest
value 1 when ti and kj were of the same con-
cept. Probabilities of P(ti, kj) and P(ti) are al-

ready computed as Eqs. (1) and (3) in Step 2. So
we only need to calculate the left required
probability value P(kj) as follows:

 1
(), () , if ()

()
x x x j

j

X

x
r t r k r k k

P k
y

=

< > =
=
∑

 (5)

P(kj) is the probability of kj. In Eq. (5), the
denominator y is the number of total records.
And the numerator is the number of records
whose keywords contain kj.

Based on this approach, the matching task
of given ti and kj becomes a two-step work: 1)
compute the coefficient value of every kj. 2)
choose the kj with the highest Jaccard_cof va-
lue. Taking these steps for all ti∈T, we will get
all TAC and device model description keyword
pairs O={<t1, k1>,…,<tM, kM>} consequently.

With this unsupervised learning method, we
implement a mobile devices recognition sys-
tem named MODER. The overall process and
architecture of MODER is shown in Figure 2.
In the next section, we will describe the de-
tailed information of how it is implemented in
a distributed parallel computing environment.

IV. PARALLEL ALGORITHM DESIGN

We now describe the parallel algorithm design
of MODER in detail. The basic architecture of
this system is shown in Figure 2. It consists of
three main modules: Keyword Extractor (KE),
Candidate Filter (CF), and Coefficient Com-
puter (CC).

The KE takes original input records as in-
put, together with TAC and UA string. It ap-
plies rule-based KE and outputs attribute pair
set R. Next, MODER feeds R to the CF, which
applies dictionary filtering and correlation
function to select first cn pairs of attributes. At
last the CC takes the coefficient function to
identify the keyword kj that best satisfies the
highest coefficient value with ti. All matching
pairs set O is the final output of MODER.

In the remainder of this section, we provide
an introduction to the MapReduce paradigm
and present the parallel implementation of
above three main components.

China Communications • July 2013 77

 4.1 MapReduce framework

The dataset needs to be processed has more
than 2 billion records. This kind of situation dri-
ves us to find a proper parallel computing sol-
ution to handle such a huge dataset. After the
survey of some possible technologies includ-
ing parallel DBMS and MPI, we choose the
MapReduce programming model due to its im-
pressive high efficiency and low cost charac-
teristics.

MapReduce is a powerful programming mo-
del designed for data-intensive parallel com-
puting in shared-nothing cluster environment
with up to thousands of low-cost commodity
computing nodes. A MapReduce application
consists of a sequence of stages that transfor-
ms a set of input data into a set of output data.
A stage is composed by a set of operation fun-
ctions named map or reduce. Data is represen-
ted as (key, value) pairs and the user defined
“map” or “reduce” computation is expressed as:

map: (k1, v1) → list(k2, v2)
reduce: (k2, list(v2)) → list(k3, v3)
Figure 3 shows an example data flow in a

MapReduce program. The input data is parti-
tioned to data splits that are feed into different
maps. A map receives a set of inputs as key-
value pair (k1, v1) and produces a set of out-
puts in the form list (k2, v2). In this phase, the
map functions are applied in parallel on dif-
ferent data splits. And the computation in each
map is stateless that every output depends
only on the current input. After that, the output
<k2, v2> pairs by each map function are hash-
partitioned on the key. Then, they are sent to
the reduce node after being merged in a sorted
order by the key. That means all the pair values
with the same key will be processed in a single
reduce node. Reduce function applies a user def-
ined processing logic on each <k2, list(v2)> and
produces output data <k3, v3>. The final result
which is typically a list of values comes from the
aggregation of all output pairs of reduce nodes.

The actual execution of a MapReduce prog-
ram is supported by a MapReduce runtime fram-
ework implementation such as Apache Hadoop
[17]. The MapReduce program is scheduled
and executed by specified number of map tasks

Fig.3 Data flow in MapReduce program

Fig.4 Data flow in KE

and reduce tasks with allocated computing res-
ources. Furthermore, the MapReduce frame-
work provides more powerful capabilities, such
as combine function, customizable hashing and
partitioning functions, to support flexible data
processing and algorithm implementation.

4.2 Keyword Extractor (KE)

KE takes the responsibility of first stage com-

78 China Communications • July 2013

 putation, extracting all possible keywords from
UA string in records and counting the number
of each <ti, kj> pair appearing. Data flow of this
stage is shown as Figure 4.

To make our description clear and simple,
we use number 1 and 2 to represent the eight
digits TAC, and letters to represent the key-
words, for example a, b, etc. The map function
gets input as the original HTTP accessing log
records including TAC, UA and other seg-
ments. For each record, the function extracts
the value of TAC and cuts the UA string to a
set of keywords according to the guideline of
specification [4]. Other useless segments in a
record for device model recognition are dis-
carded by this function. At the end of map
function, a set of attribute pairs (<ti, kj>, 1) is
emitted. The key of output data is <ti, kj>, and
the value is 1 for the following counting work.
The map function of KE is introduced in Al-
gorithm 1.

Algorithm 1 Map function of KE
Input: Key: orgFileName Value: fileContent
Output: Key: <ti, kj> Value: 1
1 for each line in fileContent
2 tac=getTAC(line)
3 ua=getUA(line)
4 while ua not empty
5 keyword=getKeyword(ua, rule)
6 ua=ua.remove(keyword)
7 key=<tac,keyword>
8 Emit(key, 1)
9 end while
10 end for

Output pairs of above map function are gr-
ouped by their key and sent to corresponding
reduce node. Subsequently, the reduce func-
tion computes the total count for each key and
value pairs and generates all possible <ti, kj>
pairs and their appearing count count_<ti, kj>
in all records. The reduce function of this step
is shown in Algorithm 2.

Algorithm 2 Reduce function of KE

Input: <<ti, kj>,list(1)>
Output: <<ti, kj>,count_<ti, kj>>
1 count=0
2 for each item in list(1)
3 count++
4 end for
5 Emit(<ti, kj>, count)

From the description of coefficient com-
puting in previous section, we know that all
possibility value is calculated through a condi-
tional count number divided by the total re-
cords number y. Therefore, we could eliminate
y in our computation and take the count num-
ber to represent the possibility value in the
following description. After KE finished its
reduce work, we get all <ti, kj> pairs and
P(ti, kj)=count_<ti, kj>, which are stored in a
file fileKE.

4.3 Candidate Filter (CF)

Recall Step 2, CF in Section III, we take a
staged approach to remove unrelated and low
possibility keywords with device models. For
the first stage, we build a domain knowledge ba-
sed dictionary to remove unrelated keywords.
We will not go into detail for this straightfor-
ward method and just leave it on below ps-
eudo code. Key point of the second stage is sor-
ting keywords based on their conditional pro-
bability P(kj|ti). From formula of conditional
probability, we get the following:

 (,) count _ ,(|)
() count _
i j i j

j i
i i

P t k t kP k t
P t t

< >
= =

< >
 (6)

In KE, we already get the count_<ti, kj>.
For various kj with a given ti, the count_<ti> is
obvious the same. So we could use count_
<ti, kj> as the weight for keywords sorting.
Data flow of the whole CF process is shown in
Figure 5. An MapReduce process named MRPt
is needed is to compute count_<ti> represen-
ting P(ti) for the following computation. And
then another MapReduce process following
MRPt named MRCF takes the work of select-
ing keywords by sorted conditional probabilities
as well as dictionary-based filtering. As an exa-
mple, we define the parameter of candidate num-
ber cn as 2.

The map function of MRPt MapReduce
process tags the record projections with their
TAC segment. Thus the reduce function re-
ceives a list of record projections grouped by
TAC and counts all number within records
with the same ti, which is count_<ti> that we
need to compute P(kj|ti).

China Communications • July 2013 79

 Unlike just counting work in previous Map-
Reduce processes, the logic of MRCF is with
some kind of complication. Problems to be sol-
ved in MRCF is how to handle multiple diff-
erent format files and link related items toget-
her for composing a complete record (P(ti, kj)
and P(ti) sharing the same ti) for further com-
putation on a parallel behaviour. We use two
advanced MapReduce technologies to meet the-
se requirements, MultipleInputs and Reduce-
side Join, which are explained in Algorithm 3.

Algorithm 3 Map function for fileMRPt

Input: Key: fileMPRt Value: fileContent
Output: Key: <ti, 0> Value: count_<ti>
1 for each line in fileContent
2 tac=getTAC(line)
3 count=getCount(line)
4 key=<tac, 0>
5 Emit(key, count)
6 end for

Besides map function illustrated in Algori-
thm 3, we have another independent map fun-
ction for fileKE shown in Algorithm 4.

Algorithm 4 Map function for fileKE

Input: Key: fileKE Value: fileContent
Output: Key: <ti,1> Value: <kj, count_<ti, kj>>
1 for each line in fileContent
2 tac=getTAC(line)
3 keyword=getKeyword(line)
4 count=getCount(line)
5 key=<tac, 1>
6 value=<keyword, count>
7 Emit(key, value)
8 end for

MapReduce MultipleInputs allows devel-
opers to specify different map functions for
different files. Thus, we develop two map
functions to handle fileMRPt and fileKE. Key
of the output of these two map functions is
differentiated by a tag (0 or 1) appending with
ti. The tag is used by the following reduce fun-
ction to identify whether a record contains co-
unt_<ti> or count_<ti, kj>. Recall the introdu-
ction of MapReduce programming model in
this section, it seems we break the rule that
keys of records computing in the same reduce
function should be the same. After we intro-
duce the tag into key, output pairs of map

Fig.5 Data flow in CF

function what we want to link together in the
same reduce function have different keys even
their ti is same. This problem is solved by our
customised Partitioner class and TextPair. First-
Comparator class. Therefore, the Reduce-side
Join is successfully accomplished by the fol-
lowing reduce function:

Algorithm 5 Reduce function of MRCF

Input: <<ti, tag>, list(value)>
Output: <<ti, kj>,< kj, count_<ti, kj>>
1 tac=getTAC(<ti, tag>)
2 count_t=popFirstItem(list(value))
3 while list(value) not empty
4 item=popFirstItem(list(value))
5 keyword=getKeyword(item)
6 count_t_k=getCount(item)
7 key=<tac, keyword>
8 value=<count_t_k, count_t>
9 Emit(key, value)
10 end while

After working of CF, we get a set of four
attributes pairs <ti, kj, P(ti, kj), P(ti)> stored in
a file fileCF.

4.4 Coefficient Computer (CC)

With previous computed attribute pairs <ti, kj,
P(ti, kj), P(ti)>, the only missing part is P(kj)
to fulfill the computation of Jaccard coefficient
value. For this, we take the fileKE as input of

80 China Communications • July 2013

Fig.6 Data flow in CC

Fig.7 UMTS network architecture

Fig.8 Segment of device model repository

MapReduce process MRPk to count number of
all kj. The map function of MRPk retrieves key-
word from each record and emits key-value
pairs <kj, P(kj)>. Then the MultipleInputs and

Reduce-side Join are used again to compose
full possibility values <ti, kj, P(ti, kj), P(ti),P(kj)>
for computing Jaccard_cof. Data flow of CC,
which is shown as Figure 6.

The two map functions for fileMRPk and
fileCF are similar to Algorithms 3 and 4 with a
little difference on preparing data for appe-
nding P(kj) to <ti, kj, P(ti, kj), P(ti)>. Here we fo-
cus on the reduce function to see how is the
final Jaccard_cof value produced, which is
described as Algorithm 6.

Algorithm 6 Reduce function of MRCC

Input: << kj, tag>, list(value)>
Output: <<ti, kj>,Jaccard_cof>
1 keyword=getKeyword(<kj, tag>)
2 count_k=popFirstItem(list(value))
3 while list(value) not empty
4 item=popFirstItem(list(value))
5 tac=getTAC(item)
6 count_t_k=getCount_t_k(item)
7 count_t=getCount_t(item)
8 jac=count_t_k/(count_t+count_k-count_t_k)
9 Emit(<tac, keyword>, jac)
10 end while

Finally, we have a file containing records
dictionary ordered by <ti, kj>. The list com-
posing by the highest Jaccard_cof value is the
output list of device models. For our example
case, words that represent the two sample de-
vices are b for TAC 1 and d for TAC 2.

V. EVALUATION OF REAL-WORLD
DATA

The central goal of our work is to develop a
functional system that can be de deployed in a
real mobile network operation environment to
recognise device models. The critical require-
ements for us are being able to recognise at
least 90% captured records and achieve 85%
above accuracy rate. Generally speaking, this
is a tall order for any existing solution to sat-
isfy. Sources of difficulty to meet above re-
quirements mainly come from the huge size of
records and disordered textual data. More than
2 billion accessing records with mixing appli-
cation and unstructured format prevent recog-
niser from performing analysis effectively and
affect the learning of the model identification

China Communications • July 2013 81

 function. In this section, we will show the exp-
eriments we conducted to evaluate how we
meet above critical requirements.

5.1 Dataset and recognition result

The experimental dataset to be processed is
captured from a living Universal Mobile Tel-
ecommunication System (UMTS) network [18]
of a leading mobile network operator in China.
Key components of the monitoring system and
MODER system what we developed for dev-
ice model recognition are illustrated in Figure 7.

A mobile device directly talks with a cell
tower (node-B) which forwards its voice or data
traffic to a Radio Network Controller (RNC).
In case of mobile data service, the RNC deliv-
ers the data service request to a Serving PRS
Support Node (SGSN) that establishes a tun-
nel on Gn interface with a Gateway GPRS
Support Node (GGSN) through which the data
enters the IP network.

Data is collected from a large UMTS net-
work for five days with the size of 2.2 billion
records. This dataset includes: 1) IMEI, which
indicates the unified identity of a mobile de-
vice; and 2) User-Agent field of HTTP request,
which is produced by mixed applications ac-
cessing data services. It is captured by the
operator through Traffic Monitoring System
(TMS) and stored in a log database for system
experimental evaluation. Given the sensitivity
of the data, privacy related information is re-
moved by the Uploader component when it
transmits logs to the distributed file system of
experimental platform. And all our results sto-
red in the Device Model Repository which is
produced by the MODER system are presen-
ted as aggregated report to protect the privacy
of individuals.

Part of example result we recognised from
the experimental dataset is shown in Figure 8.
MODER system takes first 90% records with
TAC sorted by appearing number as input and
achieve 91.5% accuracy rate of device model
recognition. Results are stored in a RDBMS
maintained device model repository in which
additional recognition set will be incremen-
tally inserted with accumulated uploading logs.

Fig.9 Accuracy rate of various cn

From the example result shown in Figure 8,
we can see that our algorithm can accurately
recognise unusual situations. For example, there
are multiple TACs belonging to one device mo-
del (iPhone), which are different with normal
one-on-one matching scenario (nokia and zte).

5.2 Study of algorithm variant cn

Definition of accuracy rate is the radio of the
sum of all correctly recognised mobile device
models to the sum of all models residing in
testing data records. This metric is the most
important parameter to evaluate the practical
value of a recognition method.

Before we evaluate the accuracy rate of our
method, we study the variable parameter cn
that limits the size of candidate keywords set
in Step 2 of our method. We randomly extract
2 billion records from the total set in 3 times
to get 3 record sets. Then, the system MODER
is executed on these 3 record sets with various
parameter cn from 1 to 10. The number of all
device models for each record set is calculated
by summing the count of TAC numbers,
which is the same value 1944 for above record
sets. Recognised result is evaluated manually
by identifying if each recognised model word
is an existing mobile device model. Accuracy
rate of each cn is the average value of 3 record
sets. Result is shown in Figure 9.

From Figure 9, we can see that the accuracy
rate is increasing with the rising of cn value.

82 China Communications • July 2013

Fig.10 Accuracy rate evaluation

Fig.11 Speedup evaluation

The accuracy rate becomes relatively stable
from 7 and reaches the highest value 91.5% on
8. After 8, the accuracy rate is slightly dropped
(around 0.1%) by few incorrect matching
words entering Step 3 with loose number limit.
According to the result of this experiment, we
choose 8 as the value for cn.

5.3 Accuracy rate evaluation

As the most widely used solution by server log
analyser and application developer for mobile
client recognition, WURFL [7] is taken as a
comparator for accuracy rate evaluation in our
experiment. To study the accuracy rate of our
method in different data sizes, we randomly
select 7 different sizes of data records, 10 tho-
usand to 2 billion respectively. For each size,
we take three times random selection. Then,

our method and WURFL based program
are executed on all 21 datasets. Final accuracy
rate value for each size is calculated as the
average accuracy rate of 3 datasets. The result
is shown as Figure 10. It should be noticed that
we only compare the accuracy rate of MODER
with WURFL instead of performance evalua-
tion because the WURFL is not a parallelized
method.

As a string matching approach, the accu-
racy rate of WURFL remains respectively sta-
ble around 12%. The reason for such a low
accuracy rate is UA fields in records are gen-
erated by both web browsers and applications
running on http protocol with unpredictable
behaviour. Even for records from web brows-
ers, WURFL cannot recognise them very well
because of fast evolution of browsers version,
which brings fast changing of http header con-
tent. It is the natural defect of string matching
based method.

From Figure 10, we can see that the accu-
racy rate of our method is increasing with the
growing size of datasets. We get 91.5% accu-
racy rate finally which exceeds the critical requi-
rement 85%. According to some study on mat-
ters of dataset size for accuracy rate of statis-
tical learning method [19], we can expect our
method to achieve higher accuracy recognition
if MODER accumulates more http accessing
records.

5.4 Speedup evaluation

Speedup is the key parameter that is used to
evaluate the efficiency of a parallel algorithm.
To evaluate speedup of our method, we choose
the dataset with fixed size of 1 billion records.
The number of Hadoop cluster nodes is chan-
ged as 1, 2, 4, and 6 to study the execution
time for recognising work. The y-axis of Fig-
ure 11 is the speedup value which is calculated
by the execution time of changing number of
nodes scenarios divided by the execution time
of 1 node scenario. The dash line indicates the
ideal speedup in this relative scale. The ideal
speedup should mathematically be a linear
speedup that means doubling the number of

China Communications • July 2013 83

 computing nodes doubles the processing speed.
From the result, we can see that our method
approaches closely to linear speedup. The rea-
son for not matching the ideal speedup is that
extra workload of data I/Os, task scheduling,
and communications between “map” and “re-
duce” nodes do not speed up linearly, which
are internal mechanism residing in Hadoop
MapReduce execution environment. Although
our parallel algorithm on larger data sets tends
to speed up slower than the linear speedup, the
total execution times, which are 33 m 53 s and
1 h 9 m 31 s for computing 1 billion and 2 bil-
lion data records respectively, satisfy the per-
formance requirement as a batch processing
program running over only 6 working nodes.

VI. CONCLUSION AND FUTURE WORK

In this article, we designed a Jaccard-based lear-
ning method as a solution to recognise mobile
device model from massive network traffic
data. Utilizing a staged architecture, our method
decomposed the recognition task into multiple
subtasks including keyword extracting, candi-
date filtering, and coefficient computing. To
achieve critically high recognition accuracy rate,
high volumes of accessing records are requi-
red as input to the recognition system. There-
fore, a set of parallel algorithms are designed
and implemented on MapReduce framework
for each stage. Through extensive experiments
using real world data, we demonstrated that
our system achieved an accuracy rate of 91.5%,
which is dramatically higher than existing sol-
ution. Furthermore, we evaluated that our par-
allelization method is scalable for processing
more traffic data to get better recognition result.

As future work, aside from continually str-
iving to improve the accuracy of the method,
our work will extend to build an automatically
accumulating solution for a complete reposi-
tory covering all captured mobile device mod-
els. Another line of future research work in-
volves studying user behaviours from device
model’s perspective by leveraging our recog-
nition results.

ACKNOWLEDGEMENT

This work was supported in part by the Na-
tional Natural Science Foundation of China
under Grant No. 61072061; the National Sci-
ence and Technology Major Projects under
Grant No. 2012ZX03002008; and the Funda-
mental Research Funds for the Central Uni-
versities under Grant No. 2012RC0121.

References
[1] CHITTARANJAN G, BLOM J, GATICA-PEREZ D.

Who's Who with Big-Five: Analysing and Clas-
sifying Personality Traits with Smartphones
[C]// Proceedings of the 15th Annual Interna-
tional Symposium on Wearable Computers: June
12-15, 2011, San Francisco, CA, USA, 2011:
29-36.

[2] JACCARD P. Etude Comparative de la Distri-
bution Orale Dans Une Portion des Alpes et
des Jura[J]. In Bulletin del la Socit Vaudoise des
Sciences Naturelles, 1901, 37: 547-579.

[3] DEAN J, GHEMAWAT S. MapReduce: Simpli-
fied Data Processing on Large Clusters[J]. Com-
munications of the ACM — 50th Anniversary
Issue: 1958-2008, 2008, 51(1): 107-113.

[4] FIELDING R, GETTYS J, MOGUL J, et al. Hyper-
text Transfer Protocol — HTTP/1.1, RFC2616[S].
June 1999.

[5] W3C Recommendation Composite Capabil-
ity/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0[S]. Jan, 2004.

[6] Specification of Open Mobile Alliance, OMA
User Agent Profile V2.0[S]. June 25, 2007.

[7] Wireless Universal Resource File Open Source
Project (WURFL)[EB/OL]. [2013-4-23]. http://wurfl.
sourceforge.net/.

[8] GEORGIEVA E, GEORGIEV T. Methodology for
Mobile Devices Characteristics Recognition
[C]// Proceedings of International Conference
on Computer Systems and Technologies (Com-
pSysTech’07): June 14-15, 2007. University of
Rousse, Bulgaria, 2007.

[9] ALMEIDAA A, ORDUN P, CASTILLEJO E, et al. A
Method for Automatic Generation of Fuzzy
Membership Functions for Mobile Device’s Cha-
racteristics Based on Google Trends[J]. Com-
puters in Human Behaviour, 2012, 29(2):
510-517.

[10] GSM Association Official Document. IMEI Al-
location and Approval Guidelines[S]. July 27,
2011.

[11] SUBHASHINI R, KUMAR V J S. Evaluating the
Performance of Similarity Measures Used in

84 China Communications • July 2013

 Document Clustering and Information Retrie-
val[C]// Proceedings of 1st International Con-
ference on Integrated Intelligent Computing
(ICIIC): August 5-7, 2010. Changsha, China,
2010: 27-31.

[12] DOAN A, MADHAVAN J, DHAMANKAR R, et al.
Learning to Match Ontologies on the Seman-
tic Web[J]. The International Journal on Very
Large Data Bases, 2003, 12(4): 303-319.

[13] LEE Y, KANG W, SON H. An Internet Traffic
Analysis Method with MapReduce[C]// Pro-
ceedings of IEEE/IFIP Network Operations and
Management Symposium (NOMS Wksps): April
19-23, 2010. Osaka, Japan, 2010: 357-361.

[14] SAMAK T, GUNTER D, HENDRIX V. Scalable
Analysis of Network Measurements with Had-
oop and Pig[C]// Proceedings of IEEE/IFIP Net-
work Operations and Management Sympo-
sium (NOMS): April 16-20, 2012. Hawaii, USA,
2012: 1254-1259.

[15] VERNICA R, CAREY M J, LI Chen. Efficient Par-
allel Set-similarity Joins Using MapReduce[C]
// Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of
Data (SIGMOD’10): June 6-11, 2010. Indiana,
USA, 2010: 495-506.

[16] Apache Mahout Machine Learning Library
[EB/OL]. [2013-4-23]. http://mahout.apache.org/.

[17] Apache Hadoop[EB/OL]. [2013-4-23]. http://
hadoop.apache.org/.

[18] 3GPP Technical Specification 23.101. General
Universal Mobile Telecommunications System
(UMTS) Architecture[S]. 2004.

[19] BANKO M, BRILL E. Scaling to Very Very Large
Corpora for Natural Language Disambiguation
[C]// Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics
(ACL’01): July 9-11, 2001. Toulouse, France, 2001:
26-33.

Biographies
LIU Jun, Head of Network Monitoring R&D Base in
School of Information and Communication Enginee-

ring, Beijing University of Posts and Telecommunica-
tions (BUPT), China. He received his B.E. and Ph.D. deg-
rees from Department of Information Engineering,
BUPT, China in 1998 and 2003, respectively. His res-
earch interests include network traffic monitoring and
telecom big data analysis. Email: liujun@bupt.edu.cn

LI Yinzhou, graduate student in the School of Infor-
mation and Communication Engineering, Beijing
University of Posts and Telecommunications (BUPT),
China. She received her B.E. degree in communication
engineering from BUPT in 2011. She is engaged in
the research of broadband IP network traffic mea-
surement and data analysis.

Felix Cuadrado, Assistant Professor with the Depart-
ment of Electronic Engineering and Computer Sci-
ence at Queen Mary, University of London, UK. He
received his Ph.D. degree from Universidad Polité-
cnica de Madrid, Spain in 2009. His current research-
es focus on autonomic computing, cloud computing,
and software engineering applied to distributed
services.

Steve Uhlig, Professor of Networks and Head of the
Networks Research group at Queen Mary, University
of London, UK. He obtained his Ph.D. degree from the
University of Louvain, Belgium in 2004. Prior to join-
ing Queen Mary, he was a Senior Research Scientist
with Technische University Berlin/Deutsche Telekom
Laboratories, Berlin, Germany. His current research int-
erests include Internet measurements, software-def-
ined networking, content delivery, and privacy-pre-
serving analytics.

LEI Zhenming, Professor in the School of Information
and Communication Engineering, Beijing University
of Posts and Telecommunications, China. He received
his Ph.D. degree from Beijing Institute of Posts and
Telecommunications, China in 1986. His research int-
erests include network traffic monitoring, controlling
and analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

