
Let Latency Guide You: Towards Characterization of
Cloud Application Performance

Hamed Saljooghinejad, Felix Cuadrado, Steve Uhlig
School of Electronic Engineering and Computer Science

Queen Mary University of London

Abstract—Public cloud infrastructures provide flexible hosting
for web application providers, but the rented virtual machines
(VMs) often offer unpredictable performance to the deployed
applications. Understanding cloud performance is challenging
for application providers, as clouds provide limited information
that would help them have expectations about their application
performance. In this paper we present a technique to measure the
performance of cloud applications, based on observations of the
application latency. We treat the cloud application as a black box,
making no assumption about the underlying platform. From our
measurements, we can observe the varying performance provided
by the different VM profiles across well-known commercial cloud
platforms. We also identify a trade-off between the responsiveness
and the load of the measured servers, which can help application
providers in their deployment and provisioning.

I. INTRODUCTION

Emerging new technologies such as augmented-reality de-
vices (e.g., Google Glass prototype) demand a higher degree
of responsiveness from applications. This phenomenon is not
new; response times are proven to have a direct effect on
business revenue. Amazon found that every 100ms of latency
costs 1% in sales [1], and eBay and Google have reported
similar findings about the impact of user latency in revenue [2],
[3], [4]. These companies deploy their services on their own
infrastructure. Software is adapted to the execution platform,
to compensate the effect of the long tail of latency [5] in their
services.

Many start-ups and medium size application providers
deploy their applications on a public cloud infrastructure.
Cloud Service-Level Agreements (SLAs) provide guarantees
on infrastructure reliability and availability. However, they con-
tain no performance-related clauses [6], and VM instance types
hide the underlying hardware details. As a result, providers
don’t know the expected performance of their application when
deployed on the cloud infrastructure.

This leads to two practical questions about Cloud applica-
tion performance in terms of throughput and latency: 1) how
well will an application perform once it runs in production-
mode on a specific Cloud infrastructure? 2) how will the
application perform under different workloads?

To tackle the above questions, we have designed a black-
box approach with no assumption about VM underlying. It
provides a way to examine and estimate the application perfor-
mance in terms throughput. Therefore, Our goal is to develop a
framework that is used to explore the performance space under
certain latency SLA. Being black-box adds simplicity as there
is no need to deploy extra software and manage configuration
at server side.

We propose a methodology that estimates the maximum
load an application server can sustain at which the latency
of the responses increase to an undesirable level. Our
methodology samples the latency values at various workloads
and observe the trade-off between application performance
and server responsiveness. We evaluate our methodology and
the corresponding tool using a data-store application deployed
in three well-known public cloud providers, namely Amazon
EC2 [7], Microsoft Azure [8] and Google Compute Engine [9].

Our contributions are as follows:

• We use the statistical properties of latency to detect the
fine-grained behavior of an application server under
load.

• We present a black-box methodology that estimates
the workload a Cloud application can sustain for a
given latency SLA.

• We identify trade-off between the throughput and
latency of application servers and also evaluate per-
formance for different types of workloads, which can
help application providers in their deployment and
provisioning decisions.

II. METHODOLOGY

The main goal of our methodology is to observe the trade-
off between application performance (in terms of operations
per second) and server responsiveness (as observed through
request/response latency). We observe the server response time
across various workloads by remotely measuring the end-to-
end latency.

A. Approach

We rely on the measured end-to-end latency of individ-
ual request/response pairs. This end-to-end latency includes
the network latency, as well as the client and server side
processing latencies. We generate controlled amounts of re-
quests/responses at a constant rate, while monitoring the
corresponding end-to-end latency values. The rationale is the
following: Application servers are typically designed to absorb
a given workload of requests. Hence, when the workload is
below a given threshold, we expect the server latency to be
low and relatively constant over time. When the workload
increases beyond what the server is able to absorb on the
other hand, we expect the end-to-end latency to increase, at
least statistically, i.e., some responses will take more time to
be processed by the server. Our methodology is designed to



probe an application server in order to identify the workloads at
which the corresponding latency increases statistically, which
we call transition state1.

Our server probing algorithm sends requests to the server,
at varying request rates (called test throughput and denoted
by Ttest). At the same time, we timestamp requests and
responses to obtain the end-to-end observed latency. As only
statistically significant variations in the observed latency are
relevant, each value of the Ttest is probed for a few seconds.
This period of time during which the Ttest is constant is called
a sample window. The reason for selecting a time window is
to avoid wrongly inferring that the server is overloaded as the
result of artefacts in the measurements, e.g., if the network
path latency increases for a very short period of time without
the server being actually overloaded.

Roughly speaking, our strategy is to go through increasing
workloads, until we reach one for which the server shows signs
of being overloaded, observed through increases in end-to-end
latency.

Our design is separated into two phases: 1)Fast ramp-up:
increasing exponentially the Ttest until the observed latency
shows signs that the server is getting overloaded; 2) Fine-
tuning: roll back and converge slowly towards a value of the
Ttest in the transition state where the observed latency meets
the user defined latency threshold.

B. Design

In both phases a given Ttest is generated, and the observed
latency is measured. A pseudocode overview of our strategy is
depicted in Algorithm 1. During the Fast ramp-up phase, the
algorithm searches for a value of Ttest at which the latency
starts increasing. This phase starts with an initial Ttest, with
subsequent sample windows exponentially increasing the Ttest

as long as the current window is marked as ”accepted”.

In this paper, we are interested in the server-side latency
only. However, the network delay component of the end-to-
end latency might inflate the end-to-end latency and mislead
us to believe that it is a server-side problem. To mitigate
such occurrences, we also measure the network latency (RTT)
using tcpping [10]. If the measured network latency during
a sample window increases significantly compared to the
baseline, we discard the measurements from the corresponding
sample window and start a new measurements of the sample
window.

If the median end-to-end latency is close enough to the
measured RTT, meaning that the server-side latency is very
small, then we assume that the server is able to handle the
current Ttest. For each second of the sample window, we check
that the median end-to-end latency is within a fraction of the
measured RTT, in which case this second will be tagged as
”Pass”. If more than half the seconds of the window are flagged
as ”Pass”, the sample window is marked as ”accepted” and the
next Ttest to be probed within the next sample window will
be increased.

On the other hand, if a sample window is not marked
as ”accepted”, it means that we have entered the transition

1The rationale for this terminology is that the application server behavior
changes quantitatively during the transition state.

10 20 30 40 50 60 70 80 90
0

2k

4k

6k

8k

10k

O
p
e
ra

ti
o
n
s 

p
e
r 
S
e
c Test Throughput

Measured Throughput

10 20 30 40 50 60 70 80 90
Time(sec)

30
40
50
60
70
80
90

100

La
te

n
cy

(m
se

c)

50th
90th

Fig. 1: Time series of a run of the methodology on a Cassandra
server deployed in the GCE.

state, Fine-tuning phase will be started. Fine-tuning phase
of the algorithm tries to refine the value of the Ttest to
get close to the true value of Ttest with which the server
gets overloaded. In this phase, we increase the Ttest linearly
instead of exponentially, starting from the highest Ttest that
did not show signs of latency increase, i.e., the Ttest from the
previously accepted sample window. In this phase, the increase
in Ttest between consecutive sample windows is a fixed rate of
the gap between the last two Ttest during the ramp-up phase.
The exact rate used will define the degree of fine-tuning of
this phase of the algorithm.

At the end of the fine-tuning phase, we will have sampled
different Ttest values, the last one being the one that our
algorithm stops at, which we call Testimate. As stopping
criterion for the fine-tuning phase, we decided to rely on a
specific percentile and latency threshold of the response time.
The reason for this lies in the common use of response time
percentiles for SLA’s [11].

If the nth percentile response time of a Ttest crosses the user
defined SLA latency threshold during the fine-tuning phase,
the algorithm terminates and the Ttest from the previously
accepted sample window is returned as Testimate. We use
Testimate in Section III to evaluate application performance on
various cloud platforms. The specific SLA settings (percentile
and latency threshold) are configurable parameters of our
technique, as different applications require various levels of
responsiveness. In our experiments, we use as SLA latency
the 90th percentile and threshold of 150ms.

C. Example

To illustrate our methodology, we present in Figure 1 the
results from a single run of the algorithm using a server located
in the Google Compute Engine cloud platform [9]. The top plot
of Figure 1 shows the values of the Ttest (in operations per
second), as well as the measured throughput (from the client
side).

We observe that the fast ramp-up phase ends at second 52,
followed by the fine-tuning phase. We can also see on the top
plot of Figure 1 the exponential increase in the values of the
Ttest during the fast ramp-up phase, and the linear increase
during the fine-tuning phase.



Algorithm 1: Pseudo-code of the methodology.
Phase = FastRampUp;
while TRUE do

SampleWindow = probeServer(Ttest);

if RTTChanges(SampleWindow) then
continue;

else
switch Phase do

case (FastRampUp)
if accept?(SampleWindow) then

Ttest=Ttest * 2;
else /* Overloaded_server */

Phase = FineTuning
Ttest = Ttest/2;
inc = rate ∗ (Ttest/2);

case (FineTuning)
if accept?(SampleWindow, SLA) then

Ttest = Ttest + inc;

else /* Found value of T_test
*/

return Ttest − inc;

The lower plot of Figure 1 shows the 50th and 90th

percentiles of the end-to-end latency over time, from which
the RTT was subtracted. We observe that the latency percentile
values are in the same range as the RTT during the fast ramp-
up phase, until the last sample window of the phase (between
seconds 42 and 52). The second part of the algorithm (fine-
tuning phase), between seconds 52 and 95, shows that the
transition happens at throughput values between 5k and 10k
operations per second. We also observe, as expected, that the
lower percentiles of the latency are less sensitive to the changes
of the Ttest.

D. Discussion

Because our goal was initially benchmarking, we designed
our methodology toward estimating the throughput that a
server can absorb without significantly increasing the end-
to-end latency. Therefore, the final look of our algorithm is
strongly dependent on our initial goal. During the design of
the algorithm, we had to choose the ramp-up policies in each
phase, and these policies affects the granularity of the Ttest. We
have selected those policies with the goal of going fast enough
through the Ttest values, to find the one at which the latency
starts increasing. The exponentially increasing fast ramp-up
phase intends to find a rough approximation of the throughput
range of the phase transition, while the linearly increasing fine-
tuning phase narrows down to a finer throughput region around
the phase transition. While other ways are possible, we believe
that our current design leads to a reasonable compromise
between speed and accuracy of the Ttest estimation.
As already explained, we measure the RTTs and compare them
with the end-to-end latency to decide about the increase of
the next Ttest. Moreover, Tcpping values that are captured at
the end of each sample window are monitored and verified
that RTTs are not affected with low and high volume of load.
Figure 2 shows cumulative distribution of tcpping values when

10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ping(msec)

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

 

 

Overload State
Cool State

0 500 1000 1500
10

15

20

25

30

35

40

Latency(95th percentile)

P
in

g
(m

se
c)

 

 
Transition and Overload State
Low load State

Fig. 2: Top)CDF of tcpping values at two state of high and low
load bottom)Scatter plot of tcpping values Vs 90th percentile
end-to-end latency repeated every hour for about 24 hours in
medium size instance in EC2.

we ran our benchmark of about 24 hours at both low and high
load traffics. It shows that in both cases the variation is low
and RTTs has not been affected by high load. We saw same
results on a longer experiment for about one week.

It is possible that the RTTs spike during the measurements,
e.g., due to routing instabilities or congestion on the path.
Figure 2 shows the scatter plot of the tcpping values of same
previous measurements. Very few (1.45% out of total) high
values of RTT spikes (more than 15msec) are observed but our
methodology has been designed to be robust not to be affected
by this issue. Indeed, if a statistically significant change of
the measured RTTs across consecutive sample windows is
observed, we discard the measurements from the suspicious
window and redo the same Ttest. Shorter and more bursty
network latency changes are discarded implicitly thanks to
the sample window. Smarter approaches are possible, e.g., by
trying to identify the exact time when the change in RTT
happened and removing the corresponding bias in the end-
to-end latency. However, given that many routing events are
transient in nature and likely affect the RTTs for relatively
short periods of time [12], we believe that for our current
purpose, the added complexity is not worth the effort.

In the next sections we pick a data-store application and
first, we benchmark that when it is deployed on various cloud
platforms and multiple types of VMs. Second, we show the
observed trade-off between server responsivity and workload.



III. EXPOSING VM PERFORMANCE

We use our methodology and test a data-store application
using different VMs and estimate its performance in terms of
throughput. The methodology that is described in Section II
is implemented as a plugin2 for Apache Jmeter [13] (tested
with v2.11), a tool for load test and performance testing of
distributed applications. In our experiments, we tested Apache
Cassandra deployments [14] using the CassJmeter [15] 0.2
plug-in for JMeter integration. [16] was also another option to
implement our methodology on top of it but due to load insta-
bility we preferred Jmeter. Apache Cassandra is a distributed
key-value storage system for managing large amounts of data
potentially partitioned and replicated across multiple servers.
This type of application provides on-line read/write access to
data in web. Usually when a web user is waiting for a web
page to load, reads and writes to the database are carried out
as part of the page construction and delivery. Testing more
types of applications is subject of our future work. In all
our experiments we consider the simplest operation to be run
on each node. So, we perform read operation for a specific
row in database and test it on different commercial and non-
commercial platform ranging from PlanetLab to well known
public Cloud players.

A. PlanetLab

Planetlab [17] has been used by researchers for more than
a decade for network and distributed services experimentation.
With PlanetLab, each user receives a slice equivalent to a
virtual machine using which, experiments can be run, without
control on the underlying hardware and network infrastructure.
Therefore, the performance of applications deployed in this
platform is highly variable. We expected concurrent exper-
iments, and hardware heterogeneity to drive the observed
performance to figures below current commercial platforms.

Fig. 3 shows the distribution of Testimate values for a
worldwide sample of 193 nodes. We have split the nodes across
continents to ease the comparison. The CDFs illustrate the
broad spectrum of nodes with different performance ranges
across the platform. Surprisingly, some PlanetLab nodes have
a performance equivalent to a high-end node in a public cloud
platform, e.g., an ”large” node in EC2 or a ”standard2” in
GCE. We observe an overall better performance for European
nodes, most likely because the blades have been installed more
recently.

B. Public Cloud platforms

Public cloud providers offer various on-demand virtual
machines each with different types of resources. (e.g. Ama-
zonEC2 offers about 25 different types of instances at the
moment). Having such a variety of options makes the task
of selecting nodes for deployment very difficult.

Public Cloud platforms typically span multiple geographic
regions around the world. Each region contains several avail-
ability zones (AZs) that are physically isolated and have
independent failure probabilities. One AZ is roughly equivalent
to one data center. A VM in such platform is called an instance.
Different types of instances come with different performance

2We plan to release the tool as open source software soon

0 2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
0

0.2

0.4

0.6

0.8

1

Operations per Second

C
D

F

 

 

Europe
North America
South America
Asia
Australia

Fig. 3: Testimate measured from 193 Planetlab nodes: 109, 59,
9, 13, 3 nodes in Europe, North and South America, Asia and
Australia, respectively

characteristics and price tags in each platform. It is challenging
for users of the platforms to know how the application will
perform on each type of instance. We pick from each platform
a few instances with different cpu/memory specifications and
test our technique. We rely on our methodology as a building
block, and obtain for each run a Testimate (highest throughput
a node can sustain). This will be used as a metric to evaluate
the performance of Cassandra on various platforms under our
SLA latency constrains.

Microsoft Azure. We chose three types of instances among
the options offered by Azure (small, medium and large with 1,
2 and 4 cores and 1.75GB, 3.5GB and 7GB memory, respec-
tively). For each instance type, we deployed a Cassandra node
in 6 different AZs (2 in US, 2 in Europe, 2 in Asia). Figure 4
shows the box-plot diagram of the returned throughput for each
combination of location and instance type. Each box shows
the result of experiments ran for a 24 hour period during
which we performed a run every 15 minutes. Figure 4 shows
a clear differentiation of the Testimate for different types of
instances. Within the same instance type, different locations
showcase varying levels of performance. We expect that one
of the main factors explaining the measured performance of
different instances is the type of hardware used, as well as
the level of user multiplexing on the sampled blades. We also
observed performance variations on equivalent instances at the
same location. In particular, the figure shows a temporary
performance degradation observed in two different instance
types, namely the ”Large” instance in Asia East (ASIA-E
inside LARGE (A3) in Figure 4) and the ”Medium” instance in
US East (US-E inside MEDIUM (A2)). Our observations show
that for a short period of time, a sudden dip in performance
happens, followed by a gradual recovery. We ran the same type
of measurements on two other well known public providers,
Amazon EC2 and Google Compute engine as well as 193
nodes using non-commercial platform (PlanetLab) but due to
space limitation we will not present them here.

Overall, our results illustrate that our methodology is useful
for cloud users to observe performance of application on
different types of VMs with different specifications. We were
able to observe performance under a very simple workload.
Our measurements show variation in performance and the
capability of our proposed methodology to detect that. We



A
S
IA
-E
 

A
S
IA
-S
 

E
U
-N
 

E
U
-E

U
S
-E
 

U
S
-W

 

A
S
IA
-E
 

A
S
IA
-S
 

E
U
-N
 

E
U
-E

U
S
-E
 

U
S
-W

 

A
S
IA
-E
 

A
S
IA
-S
 

E
U
-N
 

E
U
-E

U
S
-E
 

U
S
-W

 0

2K

4K

6K

8K

10K

O
p
e
ra
ti
o
n
s 
p
e
r 
S
e
co
n
d

LARGE(A3)

MEDIUM(A2) SMALL(A1)

Fig. 4: Benchmarking three types of instances across six
different datacenters in Microsoft Azure.

believe that our methodology is useful to expose nodes with
poor performance, triggering their redeployment to a fresh VM
that exhibits the expected performance.

C. Sampling the Latency/Throughput Trade-Off

We showed in the previous section multiple estimations of
the maximum load an application server can sustain, under
a predefined latency SLA. While valuable, this metric only
reflects a partial view of reality. Application providers might
also want to know how a server will behave in the presence of
different ranges of load. We can also use our methodology
to understand this aspect of application-level performance.
Indeed, by design, our methodology samples multiple values of
the Ttest, and for each value it records the end-to-end latency
percentiles.

Figure 5 depicts the observed latency measurements for
large and medium instances in Microsoft Azure public cloud
platform. The surface plane interpolates the median end-to-
end latencies that are observed for the various values of Ttest.
Note that the more the throughput increases the more the
corresponding median end-to-end latency values increase (in
particular higher latency percentiles are more sensitive). The
surface shows that the transition state is abrupt beyond certain
Ttest in each case, i.e., as soon as the Ttest reaches values
close to the overloaded state of the server, latency increases
significantly for the high percentiles (e.g., typically the 75th

and higher). Note that similar node instances tend to have
similar latency/throughput surfaces, with larger instances (with
more RAM memory and computing power) displaying less
abrupt changes at the transition state compared to smaller
instances. Moreover, the impact of the design of our ramp up
policies are also reflected in Figure 5. The fast ramp up tends
to sparsely sample low throughput values, while the linear
ramp up during the fine-tuning phase will more extensively
cover the higher loads. Despite our attempt at finely sampling
around the transition state, we observe on the figure that the
abrupt changes in latency around the transition state make
it challenging to sample in a controlled manner around the
transition phase. This might be an interesting aspect for future
work.

0
20

40
60

80

2K
4K

6K
8K

10K

100

200

300

400

500

600

 

Percentile(th)

Throughput(ops/sec)
 

La
te

nc
y(

m
s)

100

200

300

400

500

600

0
20

40
60

80

1K
2K

3K
4K

5K
6K

100

200

300

400

500

600

 

Percentile(th)
Throughput(ops/sec)

 

La
te

nc
y(

m
s)

100

200

300

400

500

600

Fig. 5: Surface plot for different throughputs and the corre-
sponding percentiles and the result of median latency for a
large (A3) (top) and medium (A2) (bottom) size instances.

IV. MORE COMPLEX WORKLOAD AND THROUGHPUT
ESTIMATION

While the assumption about the workload in the above
sections was simple, i.e. one type of operation (read) over
one record from disk, often application providers intend to
test more complex workloads and observe the performance of
application in those scenarios. Based on those observations
they would be able to plan for deployment and provisioning
VMs. In this section, we generate different workloads using
both preliminary operations (read and write). We choose a
few workloads mentioned in [16] which is claimed as rep-
resentative examples of realistic workload. The records are
requested according to uniform and zipfian distribution (e.g.
the distributions of article access in Wikipedia is zipfian [18]).
In case of zipfian when choosing records, some records will
be extremely popular while most records will be unpopular.
We utilized the implementation of zipfian used in [16] and
integrate it into our tool.

Workload Operations Distribution Application Example
W1-only Write Write:100% Uniform e.g. A back-end to an Internet of Things (IOT) applica-

tion keep writing the incoming data where data is fed
into a BI system for further analysis

W2-only Read Read:100% Zipfian e.g. User profile cache, where proles are constructed
elsewhere

W3-Read/Write
Read:95%
write:5% Zipfian e.g. Photo tagging; add a tag or update it, but most of

the operations are read

W3-Read/Write
Read:50%
write:50% Zipfian e.g. Session store recording recent actions in a user

session

TABLE I: List of Workloads

Table. I lists three different workloads that are considered
as use-cases. We estimate the throughput for each case. The



Fig. 6: Throughput estimation of different workloads on a
m.medium VM in EC2

Fig. 7: Estimated throughput (in terms of httpGet requests per
seconds) of an Apache webserver deployed on four types of
instance in Microsoft Azure

application (Cassandra) that we use, involves both memory and
disk to perform read and write operations.

Figure 6 depicts the estimations of throughput for each
workload in table I on a medium size node in EC2 platform. It
shows that only write has the highest performance. Moreover,
in W3 involving more write operations results in higher
throughput.

V. THROUGHPUT ESTIMATION FOR ANOTHER
APPLICATION

In this section we show that our methodology is valid
using different types of application. Apache web server is
deployed on different types of instances in Microsoft Azure
cloud platform. Our tool is set to generate ”Get” requests for
a simple web page (default Apache home page). We chose
4 types of instances (A0, A1, A2, A3 with share, 1, 2 and
4 cores and 768, 1.75, 3.5 and 7GB memory respectively)
from this cloud provider using Ubuntu v14.04LTS. Figure 7
shows median Testimate values (httpGet requests per seconds)
returned from each instance based on SLA latency of 100msec
for 90th percentile. All the instances belong to Euroup north
datacenter.

VI. RELATED WORK

In this part we review different types of tools and studies
related to performance evaluation of infrastructure and the
deployed application. Benchmarking and monitoring tools are

used for evaluating and tracking the performance of both
infrastructure and application. Different benchmarking tools
exist at various levels of abstraction, from the low level system
part like CPU, to the whole application, e.g., database system.
We review some of the benchmarking and monitoring tools
and mention the difference between those tools and our work.

Low level Benchmarking. With the advent of Cloud
Computing, more and more providers offer Infrastructure-
as-a-Service (IaaS) platforms. IaaS allows the customers to
launch different types of virtual machines (VMs) with vary-
ing combinations of CPU, memory, storage and networking
capacity to choose the appropriate mix of resources for the
applications. To measure the performance of a VM often low
level benchmarking tools (or micro-benchmarking) are used.
Micro-benchmarks, e.g., [19], [20], [21] are mostly designed
to stress each of the main compute resources individually (e.g.,
CPU, disk or network) and generate one score to be used for
comparison. Li et al. [22] compared multiple cloud providers
using different types of micro-benchmarks. [23] showed the
high performance variation for most of their metrics related to
CPU, disk I/O and network in EC2. Wang et al. [24] showed
the variability of network performance in EC2 compared
to non-virtualized clusters. Barker et al. [25] quantified the
jitter of CPU, disk, and network performance in EC2 and
its impact on latency-sensitive applications. The purpose of
low level benchmarking tools is different from our work.
They are designed to benchmark different components of a
VMs. The results can be used to compare performance of
individual components of VMs in different cloud providers.
But benchmarking without the ability to interpret the results
at application level cannot be useful for application providers.
Therefore, our goal is to characterize the application that is
deployed on a given VM.

Application level benchmarking. There exist different
tools for benchmarking different types of applications. Grid-
Mix [26], HiBench [27], and Berkeley WL Suite [28] are
benchmarks that are designed for evaluating the Hadoop frame-
work. MineBench [29] benchmarks data mining algorithms.
CloudRank-D [30] offers a benchmark suite for various ma-
chine learning and data mining algorithms. CloudSuite [31] has
collected individual benchmarking tools for different types of
applications e.g. data analytic, web search, media streaming
and etc. The above data analytic and data mining tools do not
deal with user requests. However, our focus is on user requests
and dealing with corresponding response time of that requests.
Cloudstone [32] offered a benchmarking tool that contains
one web 2.0 application using one front-end and support for
one back-end application that serve the users. However, they
support one type of front-end and back-end and focus on
answering the question of how many concurrent users can be
logged-in and supported for a fixed dollar amount. Previously
the on-line transaction processing (OLTP) benchmarks are used
to evaluate the performance of the databases at back-end. For
example, TPC-C [33] simulates a few types of transactions
against a database and generates the results in two ways,
performance (transaction per minutes) and performance/price.
Their main goal is to deliver a single performance number to
compare different database systems and answer the question
of ”which is the best database system for OLTP?”. How-
ever, a single estimation is not representative for application.
moreover, changing the workloads might end up to different



performance values which is not considered in above tools. The
above benchmarking tools provide a single number represent-
ing performance of a particular application, without involving
the latency into their evaluation. However, our estimation of
the application performance is based on defined latency value.
Moreover, our target is to provide performance evaluation
based on different latency values. We sample latency values
at various loads and observe the trade-off between application
performance and server responsiveness.

Monitoring tools. Performance monitoring tools usually
provide monitoring and analysis of specific parameters of
system and notification about critical changes in their status.
Nagios [34] monitors system metrics, network protocols and
services. Processor load, disk usage, system logs, interactions
and connectivity can be monitored. Zabbix [35] is another
monitoring tool that tracks the status of CPU, memory, net-
work, disk I/O, disk space and log files. The purpose of
monitoring tools is to monitor and alert users about the changes
in server performance elements. Moreover, monitoring tools
are by nature white-box, i.e., they have to access and track the
status of internal elements of system. The results of monitoring
tools are difficult to translate into global application level-
performance. However, the focus of our work is to provide
a fine grain behaviour of performance at application level.
Our approach is black-box, i.e., we treat the whole application
server as a black-box with no assumption about internal of
application and we employ the external values of latency
from a remote node and explore the performance space of
application.

VII. CONCLUSION

In this paper, we present a black-box technique that mea-
sures the performance of cloud applications. We probe the
application remotely, iteratively adjusting the generated load
based on the measured latency from previous steps. Using our
technique, we have estimated the maximum capacity of an
application for a given SLA over multiple cloud platforms.
Our results show that not only we can detect the performance
differences between instance types and platforms, but we
can also pinpoint individual VMs that exhibit unusually poor
performance. Moreover, our methodology samples the server
behaviour for a range of loads by recording the observed
latencies for each load. From sampling results, we identify
trade-off between performance and latency. We have also
involved more complex workloads and showed performance
estimation in different scenarios.

REFERENCES

[1] G. Linden, “Make data useful,” Presentation, Amazon, November, 2006.
[2] P. Dixon, “Shopzilla’s site redo - you get what you measure, velocity

conference talk. http://velocityconf.com/velocity2009/public/schedule/
detail/7709,” 2009.

[3] J. Hamilton, “The cost of latency,” Perspectives Blog, 2009.
[4] E. Schurman and J. Brutlag, “The user and business impact of server

delays, additional bytes, and http chunking in web search,” in Velocity
Web Performance and Operations Conference, 2009.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74–80, 2013.

[6] Amazon ec2 service level agreement(2014). [Online]. Available:
http://aws.amazon.com/ec2-sla/.

[7]

[8] Microsoft azure(2014). [Online]. Available: http://azure.microsoft.com/
en-us/.

[9] Google compute engine(2014). [Online]. Available: https://cloud.
google.com/products/compute-engine/.

[10] R. van den Berg. tcpping. [Online]. Available: http://www.vdberg.org/
∼richard/tcpping.html

[11] A. Croll and S. Power, Complete Web Monitoring: Watching your
visitors, performance, communities, and competitors. ” O’Reilly
Media, Inc.”, 2009.

[12] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, “Understanding network
delay changes caused by routing events,” in Prof. of ACM SIGMETRICS,
2007, pp. 73–84.

[13] Apache jmeter. [Online]. Available: https://jmeter.apache.org/
[14] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” ACM SIGOPS Operating Systems Review, vol. 44,
no. 2, pp. 35–40, 2010.

[15] Cassjmeter.cassandra jmeter driver. [Online]. Available: https://github.
com/Netflix/CassJMeter/.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing. ACM, 2010, pp. 143–154.

[17] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: an overlay testbed for broad-coverage
services,” ACM SIGCOMM Computer Communication Review, vol. 33,
no. 3, pp. 3–12, 2003.

[18] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload
analysis for decentralized hosting,” Computer Networks, vol. 53, no. 11,
pp. 1830–1845, 2009.

[19] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[20] Dbench. [Online]. Available: https://www.samba.org/ftp/tridge/dbench
[21] Unixbench. [Online]. Available: http://freecode.com/projects/unixbench
[22] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: comparing

public cloud providers,” in Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 2010, pp. 1–14.

[23] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measurements
in the cloud: observing, analyzing, and reducing variance,” Proceedings
of the VLDB Endowment, vol. 3, no. 1-2, pp. 460–471, 2010.

[24] G. Wang and T. E. Ng, “The impact of virtualization on network per-
formance of amazon ec2 data center,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1–9.

[25] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proceedings of the first annual
ACM SIGMM conference on Multimedia systems. ACM, 2010, pp. 35–
46.

[26] gridmax. [Online]. Available: http://hadoop.apache.org/mapreduce/docs/
current/gridmix.html/

[27] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench bench-
mark suite: Characterization of the mapreduce-based data analysis,” in
Data Engineering Workshops (ICDEW), 2010 IEEE 26th International
Conference on. IEEE, 2010, pp. 41–51.

[28] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for
evaluating mapreduce performance using workload suites,” in Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2011 IEEE 19th International Symposium on. IEEE,
2011, pp. 390–399.

[29] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “Minebench: A benchmark suite for data mining workloads,” in
Workload Characterization, 2006 IEEE International Symposium on.
IEEE, 2006, pp. 182–188.

[30] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z. Xu, and N. Sun,
“Cloudrank-d: benchmarking and ranking cloud computing systems for
data processing applications,” Frontiers of Computer Science, vol. 6,
no. 4, pp. 347–362, 2012.

[31] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevd-
jic, C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing
the clouds: a study of emerging scale-out workloads on modern hard-
ware,” ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp.
37–48, 2012.



[32] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Proc. of CCA, vol. 8, 2008.

[33] Tpc-c. [Online]. Available: http://www.tpc.org/tpcc/.
[34] Nagios, infrastructure monitoring(2014),. [Online]. Available: http:

//www.nagios.org/
[35] Zabbix, enterprise-class monitoring solution(2014),. [Online].

Available: http://www.zabbix.com/


