

Model-based Context-aware Deployment of Distributed
Systems

José L. Ruiz, Juan C. Dueñas and Félix Cuadrado
Departamento de Ingeniería Telemática-ETSI Telecomunicación

Universidad Politécnica de Madrid
Avda. Complutense s/n (Madrid)

Tel. +34913366831. Fax. +34913367366
{jlruiz, jcduenas, fcuadrado}@dit.upm.es

Abstract
Software deployment deals with the transition of software assets from production to
consumers’ sites. Distributed systems are created by combination of multiple software
components at runtime, possibly running on different devices over a network, making
the problem of deployment harder than in the case of centralized systems. This paper
presents a model for the description of software components, distributed systems and
their dependencies, and a mechanism that uses them to automate the deployment of
software units onto devices. These have been implemented and validated in a case
study, the Digital Home, which demonstrated its feasibility.

1. Introduction

Software deployment consists of provisioning developed software products to the
consumers’ targets. After several deployment operations it becomes hard to keep system
consistency, because components manifest complex dependencies at different but
interrelated levels (ranging from software elements to hardware pieces). All of them
must be properly understood and resolved in order to carry out an appropiate action.
Despite this fact, deployment challenges have traditionally been neglected by theorists
and left over to systems engineering practitioners.

In addition to these difficulties, the recent surge of dynamic distributed computing
systems raises the stakes to a higher level. Service-oriented systems are an outstanding
and market-relevant representative of distributed systems. In contrast with centralized
approaches that release large, monolithic applications, services are created by runtime
combination of multiple software components over a network. Furthermore, changes in
software are very frequent. Market needs push software providers in a never ending race
to include new features, improve performance and enhance user friendliness. As a
consequence, system’s components have to be constantly updated, configured and
removed. However, service provision must still preserve its quality levels. All in all
software deployment issues have an undeniable impact on IT systems’ operation and
maintenance costs.

This paper presents a model for the description of software applications and distributed
deployment targets, and a supporting architecture that uses them to automate software
deployment onto servers at the deployment target. We use the term context-aware as the
executed operations are adapted to the current status of the deployment target.

2. On Deployment Automation
Distributed, component-based systems are one of the key challenges for software
deployment [1]. Regardless of the application domain, component packages (such as
Linux RPM files, JEE packages and .NET assemblies are the units which are actually
deployed. Nonetheless, at runtime they expose objects, libraries and services. Building
applications by means of connecting components promotes software reuse and lessens
the required effort for creating applications. The SOA (Service Oriented Architecture)
paradigm goes a step further, as it promotes creating new functionality by the dynamic
combination of services provided by different stakeholders [2]. SOA adds two
additional pieces to the complex puzzle of software deployment 1) dynamic availability
and 2) runtime binding.

Thanks to the Internet, services can be offered anywhere, in a very short time and at low
cost. However, automating deployment is essential to achieve a mature service market.
Manual process support is out of the question in large scale scenarios, such as service
provisioning to the residential environments [3]. Not only because it is prone to errors,
but also because it is not cost-effective.

Deployment is not only a challenge for large scale distribution systems. Enterprise
deployment environments, such as banking and e-commerce, do experience similar
problems. Business demands more flexibility and agility to adapt to customer needs.
This is pushing a change in the core systems from centralized host-based architectures
to distributed environments populated by application servers, database systems and
Enterprise Resource Planners (ERP). The deployment architecture must cope with 1)
the large amount of service components that must be handled and 2) the complexity of
the runtime distributed system.

Unfortunately, automating deployment is not a simple task. Solving dependencies (the
relation between a software or system component and others it depends upon) is one of
the most important open issues. In addition, the dependency resolution process must be
version aware, as version changes too often have an impact on the dependent software.
Commercial tools such as IBM Tivoli Provisioning provide enterprise system
management solutions. They provide an excellent basis for defining and executing
deployment scripts over the environment. However, they operate oblivious to the actual
state of the system, offering limited reasoning capabilities over the heterogeneous
managed resources.

In addition, getting a context-aware distributed deployment system poses more
challenges. Although the term “context-aware” has several meanings [4], in the context
of deployment, it is constituted just by the controllable parameters which are relevant to
this task (leaving apart, for example, user context adaptation). In [5], the authors
describe an automatic deployment and configuration system for CORBA applications
over a cluster of available nodes. Component automatic reasoning is achieved by
including descriptors defined in SPDF (Simple Prerequisite Description Format). They
contain both logical and environmental dependencies, which are processed to select the
destination node of the desired service. However, these descriptors lack expressivity,
and are unaligned to the information modeling standards. In contrast to that, models
provide a powerful mechanism to represent the physical context of the environment
(including its topology and state), and the logical context represented by the software
dependencies.

3. Model-based Deployment Automation
Different approaches have been applied to automate deployment processes. Talwar [6]
classifies them as script-based, object-oriented and model-driven. Scripts were the first
attempt to automate deployment, and are a very good solution when there is little
variability in the process. A better level of reuse, though at a higher learning cost, can
be achieved using object-oriented languages, because they benefit of mechanisms such
as inheritance and composition, e.g. it is possible to create a new deployment task by
extending an existing one. Model-driven deployment brings new possibilities, as
resources, systems and applications can be separately modeled and therefore, more
specific and intelligent tools can be developed. Moreover, models provide an
abstraction layer over the heterogeneity of the managed system. Our deployment
architecture proposal is model-based and builds on the basis of the OMG (Object
Management Group) D&C (Deployment and Configuration) [7] and the DMTF
(Distributed Management Task Force) CIM (Common Information Model) Application
model [8] standards.

For adapting deployment to the target we need models that provide an efficient
representation of the target topology, capabilities and available resources. The D&C
resource model is object-oriented, simple and flexible. Resources are named entities
classified into one or more types. Resource instances model physical artifacts, mainly:
nodes, bridges and links. Typecasting allows interpreting and understanding the
resources’ nature, as well as the way to handle them.

In addition, resources can be parameterized with a collection of properties that can be
either static or dynamic. Each property has a name, a value and a kind. The property
kind determines the consumption nature of the resource, by means of setting a
minimum, a maximum, a capacity limit or requiring certain value. Resource managers
compare and handle resources consumption at the deployment target according to
property kinds and values. The process of determining the feasibility of carrying out
deployment actions by type and property matching can be regarded as a CSP
(Constraints Satisfaction Problem).

This model fundamentally covers hardware-related resources such as disk space,
physical memory or network interfaces. Because of that, it is not sufficient to provide
context-aware deployment. Knowledge of already deployed units must be considered to
avoid wasting resources, find suitable updates and detect conflicts between software
units. Because of that, we have extended the D&C specification, improving its support
for software description (adding software resource types, including versioning
information and so on). This way, we use the same resource model for describing both
software components and the deployment target. Next section presents the details of the
model.

4. The Deployment Units Model

In order to automate deployment tasks software components must be described by
additional metadata. We propose an XML deployment descriptor that covers the
contextual aspects discussed in previous sections. Its syntax and grammar are specified
in both XML Schema and eMOF metamodel.

As basis for the deployment descriptor we have adopted the CIM Application model.
Figure 1 shows the fundamental entities of the model. SoftwareProductType is the unit

of acquisition, which can be broken down into software features. A feature represents
the unit of choice that is offered to a software consumer, e.g. a TTS (Text-To-Speech)
product could be modeled as two features, a core feature with basic functionalities and
an extra feature with additional voices. The feature description includes a list of
software elements, which are the actual deployment units. Units export logical resources
(e.g. services), which are described using the extended D&C model.

Very frequently, deployment units have dependencies. We manage dependencies using
two mechanisms 1) specifying other deployment unit or 2) specifying a required
resource contained in any deployment unit. Obviously the first option is only used for
software dependencies. The second is used to specify software requirements such as the
need of a certain API, a specific service implementation and also constraints on other
resource types, such as required memory, disk space or minimum bandwidth. The
model also supports the definition of first-order logic expressions on dependencies, as
well as imposing locality constraints; e.g. some units can’t communicate over different
processes and thus must be deployed in the same node container.

5. Architecture Elements
This section describes the main architecture components that carry out deployment
actions based on the models described above. For this purpose we will focus on a
specific application scenario, the Digital Home. Figure 2 showcases the two basic
entities: 1) active repositories and 2) deployment targets (represented in the figure as
peripheral clouds). These must be available in any implementation of the deployment
architecture.

Each independent management domain constitutes a deployment target. It is composed
by one Target Management Node and several managed nodes, which are interconnected
through a LAN (Local Area Network). On the left hand side of the picture, managed
nodes and the target management node are mapped to real devices in a home target
domain. In the Digital Home the centric device is the Residential Gateway (RG). An
RG act as a communications gateway and as a Target Management Node for
deployment purposes. In the figure, there are two additional managed nodes: a PC and a
multimedia centre. The RG can reach one or more Active Repositories over the
network.

So far we have just provided a simplified view of the deployment infrastructure. In
order to understand the role of the deployment target and the active repository we need
to get into details. Figure 3 shows the main components and the most important
associations among them. We will start with the deployment target elements and follow
with the active repository.

Deployment Target

In the target the Context Gatherer collects information on the resources of a single node
and exposes it through well-defined services using the resource model. There can be
multiple gatherers providing different kinds of information, such as operating system
details (version, name, or installed libraries), hardware resources (static capacities and
available free resources), deployed units, and so on. This information is aggregated by
the Node Manager. The latter executes local deployment operations in its node:

installation, activation, deactivation, (re)configuration, removal and update of
deployment units.

The Target Manager coordinates the activities that take place at deployment target
level by interacting with active repositories. Its basic responsibilities are 1) providing up
to date deployment target information aggregating Node Managers information and 2)
the coordination of the deployment plan execution (dispatching actions to Node
Managers). For this, the Target Manager must be aware of node manager instances
running on the target. The target topology could be manually defined by an
administrator, and be stored into a configuration database. However, this is usually an
arduous task. And even worse, descriptions should be updated according to changes in
the target. We have automated this process by means of a Discovery Service based on
DNS-SD (Service Discovery) [9]. Node discovery simplifies operation and maintenance
as it is adaptive to deployment target changes.

The implementation of Target and Management nodes for the Digital Home scenario is
depicted at the bottom of Figure 2. The target instrumentation runs over an OSGi
platform. The OSGi component and service model [10] simplifies the communication
between the different agents and allows dynamic binding between the Node Managers
and the Context Gatherers.

Active Repository

The active repository 1) registers deployment unit descriptions, 2) supports unit
searches, 3) resolves unit dependencies (by providing the name and version of the unit
or the specification of required resources), 4) applies policies to select among equivalent
units (e.g. multiple implementations of a required service) and 5) selects the distribution
of units over the nodes, producing a Deployment Plan.

The repository provides CRUD (Create, Read, Update, Delete) operations for
deployment unit descriptions. It also provides links to physical packages. These
functions are allocated to the RepositoryManager. In addition, the repository reasons
over the models, creates and invokes operations on the target, and thus we call it ‘active
repository’.

The Resolver processes transitive dependencies (expressed in the descriptors) on
software resources and deployment units. Each required resource may be satisfied by
zero or more deployment units at the repository. If there are several candidates the
Resolver relies on a Selection Policy Manager to pick one among them. The outcome of
the resolution process is a deployment units’ closure that contains the relationships
among all the components that must be included in the deployment plan. After this, we
need to distribute the unit closure across the deployment target. The Target Manager
provides information on the available resources and nodes at the deployment target,
which is a mandatory input to prepare a plan. Since potentially there are multiple valid
component distributions, a Planner relies on the Distribution Policy Manager to find an
appropriate solution. In order to prepare a deployment plan the following information is
taken into account:

• Current status of the deployment target: software, hardware and networking
resources. Average and static values can also be considered.

• Already available deployment units, so we avoid duplicating units and we can
detect potential conflicts between units.

• Deployment units’ locality constraints must be checked and ensured.

• End user preferences or business rules could be included as deployment policies,
so the process can be executed automatically without human intervention.

The architecture offers two extension points for the provision of policies, each one
controlled by its manager: Selection Policy and Distribution Policy. Initially we have
created programmatic implementations, but we have also performed experiments using
linear programming solvers and we devise the application of rule-based servers to
contribute that functionality.

All in all, we have provided an agents’ infrastructure able to get information about the
physical context; defined models for the management of logical dependencies among
the software components, and applied a resolution algorithm to select a combination of
software components that fit to the physical context and fulfill the logical dependencies.
The selection of elements and their allocation to the physical context are automated by
the application of policies.

6. Case Study: the Digital Home

We have already mentioned how the Digital Home scenario is an emerging domain
where automated deployment can play a fundamental role. In this scenario there is a
wide range of services suitable for deployment: multimedia entertainment systems,
surveillance services or consumer electronics control, just to mention a few. These
services can be accessed through multiple devices, interconnected through local area
networks and with indirect Internet access.

At home, the key element is the Residential Gateway (RG). It acts as an intermediary
between the existing home networks and devices, and the external networks and service
providers. Concerning deployment, the RG plays the role of Target Management Node
and cooperates with a remote control centre that includes the Active Repository for
carrying out deployment activities. Home devices are considered as managed nodes.
The OSGi framework provides a suitable environment for the remote management of
digital homes. OSGi was originally designed for embedded systems but it has extended
to many other environments ranging from smartphones to application servers. In this
scenario deployment operations are carried out over OSGi containers, but we have also
applied this approach to Linux Debian packages [1].

In order to illustrate the runtime behaviour of the deployment architecture we are going
to focus on a sample case study: the deployment of a multimedia service called
ePallantir (http://vlc4osgi.forge.os4os.org/ePallantir/), a multimedia platform created at
our research group. Figure 4 shows the product’s structure, broken down into two
features: the multimedia player and an RSS feed searcher and reader.

The player feature is provided by two deployment units, a player based on the VLC
project (http://www.videolan.org/vlc) and a GUI. The FeedSearcher feature is provided
by a unit (based on the JDom project http://www.jdom.org/) that provides an API to
search in RSS feeds.

Figure 4 depicts the deployment descriptor of the VLCPlayer, which provides the
following information (excerpted from the original XML descriptor):

• Dependencies (requirements for the VLCPlayer):

o Java-Package, multimedia.piplayer.playerfactory, version 1.0.
o Memory, at least 64 MB RAM available.
o Operating System, Linux.
o Java-Runtime, an OSGi framework version 4.0.
o CPU, at least 200Mhz.

• Exported Resources:
o Java-Package, multimedia.player.vlcplayer, v1.0.

The deployment target is composed of three nodes: the RG, a multimedia centre and a
general purpose PC (as the one appearing at the left-hand side of Figure 2). The RG
holds the target manager and the others are managed nodes. At runtime Node Managers
gather local information as shown in Table 1, and make it dynamically available to the
Target Manager.

Figure 5 shows a simplified version of the sequence of operations that take place during
the process. In this example the deployment sequence is initiated by the RG, although it
can be launched either upon the end user demand or by a remote control centre. The
operation requested is the deployment of the ePallantir software product.

First, the Resolver service finds three additional deployment units to satisfy ePallantir’s
dependencies ending with this unit list:

• U1 (packaged as multimedia.piplayer.vlc4osgi.jar) included in ePallantir’s
product description. It provides the player component.

• U2 (packaged as multimedia.piplayer.gui_0.8.jar), also included in the original
description. It provides the GUI for the player component.

• U3 (packaged as multimedia.ofindu_1.0.jar). It provides the RSS searcher
feature of ePallantir.

• U4 (packaged as multimedia_0.9.jar), resolves dependencies on Java packages
for U1 and for U3.

• U5 (packaged as org.jdom_1.0.0.jar), resolves a dependency on one Java
package for U3.

• U6 (packaged as com.sun.syndication_0.8.0.jar), that resolves the dependencies
on several Java packages for U3.

Once this information is obtained the Planner can elaborate a distribution plan. The
Target Manager provides information on nodes and resources at home: the Multimedia
Centre and the general purpose PC (see Table 1). Then, the Planner generates a plan
respecting the hardware resource requirements and the locality constraints (U1, U2 and
U4 deployment units must be allocated to the same node, because their dependencies
are related to Java package imports). Finally it applies a distribution policy that spreads
the load across the domain according to memory sizes.

As a result units U1, U2 and U4 are mapped to the multimedia centre device and U3,
U5 and U6 are mapped to the general purpose PC. These two groups can interact over
the network, because RSS feeds use the HTTP protocol. The plan is dispatched by the
Target Manager to the corresponding node managers, which are provisioned with their
implementations of the OSGi framework. Node Managers install, configure and start
units as required by the plan, achieving a valid distributed deployment.
We can see in Figure 5 the main interactions between the Active Repository and the
Deployment Target. Uplink traffic (from the target) conveys a “snapshot” of the Target
Domain, which accounts for 80Kbytes with no XML payload compression. Downlink

traffic contains the deployment units (in this case, 12Mbytes compressed) and the plan
operations. After several deployment operations have been performed in a Target
Domain, our system will take advantage of it, requiring increasingly less units to deploy
a complete application (thanks to the already deployed units).

7. Discussion and conclusions
This paper contributes to the area of software deployment with an architecture that
adapts the operations to the current status of the distributed deployment target.
Deployment activities can be initiated from remote locations and deployment units can
be fetched from multiple unit repositories. Furthermore, the units that collaborate to
provide a certain service can be allocated to different nodes at the deployment target
preserving their locality constraints.

These goals are supported by the models of both the software components and the
distributed deployment target. They include information about the capabilities offered
by each element, and the restrictions or dependencies to other elements, usually
software components. Software components’ constraints must be satisfied by
capabilities of the deployment target. Using consistent models for all these elements
opens the possibility to automate the processes that: get a current snapshot of the
deployment target, calculate a complete set of software components that satisfy
dependencies, select among the potential solutions according to policies, identify where
in the network each software component will be deployed and finally download and
install them. These functions have been assigned in the deployment architecture to the
two main entities: the active repository –server side-, and the target managers –clients.

We have performed several proofs of concept for different domains; here we have
described the “digital home” case study and the operations required to deploy an
advanced multimedia system over a home network. We are doing experiments on
deployment of complex environments and business software on server farms, and we
are convinced about the usefulness of this approach in automating IT activities.

The home domain does not impose heavy requirements on failure management or
performance for the execution of deployment operations. It might happen that the end
user initiates a deployment operation while other resource-consuming processes occur
at the target, aborting the plan execution. In this case, the operation should be reapplied
whenever the resources were available.

Also we understand it is not a closed research, as several aspects have not been
considered yet: First, batch operations execution should be supported to implement
massive deployment tasks. Also, we intend to improve failure management during
deployment plan executions. Ideally, we would like to provide deployment operations
with a transactional nature. Improvements in these areas would allow us to apply the
concepts in more strict requirements domains.

References
[1] A. Dearle, “Software Deployment, Past, Present and Future”, International Conference on
Software Engineering 2007, Future Of Software Engineering, pp. 269-284

[2] T. Erl Service-Oriented Architecture. Concepts, Technology and Design. Published by Prentice
Hall, 2005.

[3] J. C. Dueñas, J. L. Ruiz, and M. Santillán. An End-to-End Service Provisioning Scenario for
the Residential Environment. IEEE Communications Magazine, vol. 43, no. 9, September 2005.

[4] D. Ayed, C. Taconet and G. Bernard A Data Model for Context-Aware Deployment of
Component-based Applications onto Distributed Systems. Component-oriented approaches to context-
aware systems Workshop ECOOP 2004.

[5] F. Kon, J.R. Marques, T.Yamane, R.H. Campbell, M.Micunas,“Design, implementation, and
performance of an automatic configuration service for distributed component systems”, Software
Practice and Experience, 2005, 35, 7, 667-703

[6] V. Talwar, D. Milojicic, C. Qinyi Wu Pu, W. Yan and G. Jung. Approaches for service
deployment. IEEE Internet Computing Magazine, 2005, vol. 9, no. 5, pages 70-80.

[7] Deployment and Configuration of Component-based Distributed Applications Specification.
OMG formal specification version 4.0 formal/06-04-02, 2006.

[8] Common Information Model (CIM) specification v2.1, http://www.dmtf.org/standards/cim

[9] M Krochmal, S Cheshire, DNS-based Service Discovery, Internet Draft, August 2006,
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt

[10] Open Services Gateway Initiative. OSGi Service Platform, Specification Release 4.1,May ,
2007.

Bios
Juan C. Dueñas (jcduenas@dit.upm.es) is a professor in the Telecommunications
School at Universidad Politécnica de Madrid. His research interests are: Internet
services, service-oriented architectures, software architecture and engineering. He is a
member of IEEE. He has writen more than 50 papers on international congresses and
workshops. He received his PhD in telecommunication engineering from UPM.

Félix Cuadrado(fcuadrado@dit.upm.es) is a PhD candidate and researcher at the
telematics engineering program at UPM. He has contributed to several Spanish and
European research projects. His research interests include open source software
development, and the deployment and configuration of distributed services. He is a
member of IEEE. He received his master of engineering degree in telecommunication
from UPM.

Jose L. Ruiz(jlrrevuelta@indra.es) is an IT consultant for the financial & insurances
market at Indra. He received a PhD in Telecommunications Engineering at UPM in
2007. Before that, he worked as a researcher in the UPM Telematics department,
contributing to multiple Spanish and European projects. His research interests are in
enterprise service engineering.

SoftwareProduct

name [1..1] string

version [1..1] string

warranty [0..1] Warranty

features [0..*] SoftwareFeatures

dependencies [0..*] SoftwareProduct

SKUnumber [0..1] string

idNumber [0..1] string

Dependencies

depExpression [1..1] string

dependency [1..*] Dependency

DeploymentUnit

description [0..1] string

provider [0..1] Provider

package [1..1] Package

exportedRes. [1..*] Resource

dependencies [0..1] Dependencies

RequiredResourceProperty

name [1..1] string

value [1..1] anyURI

kind [1..1] PropertyKind

Dependency

Id [1..1] string

Locality [0..1] LocalityConstraint

Description [0..1] string

requiredRes.[1..1] RequiredResource

Container [0..1] Package

SoftwareFeature

name [1..1] string

swElements [1..*] DeploymentUnit

RequiredResource

name [0..1] string

version [0..1] string

type [1..1] string

properties [0..*] ReqResourceProperty

Package

name [1..1] string

version [0..1] string

securityInfo [1..1] SecurityInfo

repositories [0..*] UnitRepositories

Figure 1 Deployment Units Model

Deployment Target

Deployment Target #2
Deployment Target #N

ActiveRepository

ActiveRepository

Hardware + Drivers

OS

JVM

OSGi

N
o
d
e
M
a
n
a
g
e
r

Managed Node

Hardware + Drivers

OS

JVM

OSGi

D
o
m
a
in
M
a
n
a
g
e
r

Resources

Target

Management

Node

Managed Node

TargetManager

Residential

Gateway

C
o
n
te
x
tG
a
th
e
re
r

D
is
c
o
v
e
ry
-

J
m
D
N
S

A
d
d
it
io
n
a
l

E
x
te
n
s
io
n
s

D
is
c
o
v
e
ry
-

J
m
D
N
S

A
d
d
it
io
n
a
l

E
x
te
n
s
io
n
s

PC

Multimedia

Centre

Figure 2 Deployment View of the Digital Home

Figure 3 Main Architecture Components

Figure 4 ePallantir: A Software Product Description

Table 1 Deployment Target Profile

Node Type: HardwarePlatform Type: SoftwarePlatform

RG Memory Size: 64M JRE Version:1.6.0

FreeNow: 31MB

CPU Architecture: i386 Operating
System

Linux
Version: 2.6 AvgLoadLast10min:

0.07

Multimedia
Centre

Memory Size: 512MB JVM Version:1.6.0

FreeNow: 410MB

CPU Architecture: i386 Operating
System

Windows XP
Version:
Multimedia
10

Frequency: 1.6Ghz

AvgLoadLast10min:
0.23

General
purpose PC

Memory Size: 2GB JVM Version:1.6.0

FreeNow: 800MB

CPU Architecture: i386 Operating
System

Linux
Version: 2.6 AvgLoadLast10min:

0.3

Figure 5 ePallantir Deployment Sequence

