
For Review
 O

nly

Applying events stream processing to network Online

Failure Prediction

Journal: IEEE Communications Magazine

Manuscript ID COMMAG-16-01135.R2

Topic or Series: Network & Service Management Series

Date Submitted by the Author: n/a

Complete List of Authors: Dueñas, Juan; Universidad Politécnica de Madrid, Telemática, ETSI
Telecomunicación
Navarro, José; Universidad Politécnica de Madrid, Telemática, ETSI
Telecomunicación
Parada, Hugo; Universidad Politecnica de Madrid, Electrónica y Telemática,
ETSIS de Telecomunicación
Andión, Javier; Universidad Politécnica de Madrid, Telemática, ETSI
Telecomunicación
Cuadrado, Félix; Queen Mary University of London, School of Electronic
Engineering and Computer Science

Key Words:
online failure prediction, events stream processing, training and prediction
models, proactive fault management, Spark streaming

For Review
 O

nly

Applying event stream processing to
network Online Failure Prediction

Juan C. Dueñas1, José M. Navarro1, Hugo A. Parada G.1, Javier Andión1, Félix Cuadrado2
1{juancarlos.duenas, josemanuel.navarro, hugoalexer.parada, j.andion}@upm.es

1Universidad Politécnica de Madrid, Spain
felix.cuadrado@qmul.ac.uk

2Queen Mary University of London, UK

Abstract
Predicting failures on networks and systems is critical in order to maintain high uptime rates.
Online Failure Prediction (OFP) techniques use machine learning and predictive analytics to
generate failure models that can be applied to computer network data. These techniques
can be provisioned on state of the art stream processing systems, such as Spark Streaming,
in order to cope with the scalability challenges from the base data. A big challenge with OFP
is selecting the right information to process, as well as the appropriate features in order to
achieve high accuracy in predicting failures on complex, interconnected systems. In this
paper we describe an Online Failure Prediction system built over Apache Spark that takes a
repository of network management events, trains a Random Forest model and uses this
model to predict the appearance of future events in near real time. We show through our
experiments the usefulness of network management events for accurate predictions, and the
advantages of the proposed system in terms of predictive quality, cost and ease of
deployment.

1. Online Failure Prediction in practice
Effective management of large-scale distributed systems requires a proactive approach to
failure management. Current research efforts propose self diagnosing systems [1--3] that
forecast their future state in order to predict failures, thus reducing the time to repair. Online
Failure Prediction (OFP) [4] aims to provide accurate predictions with minimal intrusiveness,
observing the current state of the system and applying prediction rules to foresee future
states. OFP techniques frequently define their prediction rules based on the experience of
domain experts and system administrators.

Recently, Machine Learning prediction methods have been applied to Network Management
systems [5]. Unlike traditional approaches, these algorithms achieve high accuracy by
automatically detecting rules and patterns from the studied system. Ensemble methods,
such as Random Forest [6], have become one of most promising machine learning
approaches for prediction. These techniques train an ensemble of hundreds of simple
models, combining their individual results to capture feature interactions, providing highly
accurate predictions. Random Forest methods have been successfully applied to several
network management problems, such as hardware failure prediction [7], and network

1

Page 1 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

intrusion detection [8].

However, ensemble methods are challenging to implement in online scenarios with strict
time prediction requirements; these techniques require training and executing a large
number of models, which can be challenging to accomplish within strict temporal prediction
deadlines. On the other hand, state-of-the-art distributed stream processing platforms such
as Apache Storm and Spark Streaming [9], are a natural candidate to enable timely accurate
predictions over a large volume of event data.

This paper presents an online failure prediction system for network events based on
ensemble methods. The system performs live predictions with high scalability, exploiting
Apache Spark to parallelize model training and prediction tasks. We validated the system
with an industrial dataset of network management events from a major Spanish bank. We
also present the main requirements and design decisions of the system, as we believe they
can be applicable to other online network management scenarios.

2. The Failure Prediction System
The motivation of our work was to aid a Spanish bank to design a proactive management
system enabling system administrators to react to critical events before they appear on this
network. We worked with a dataset of network management events occurring at the bank
datacenter between September 2014 and June 2015. The managed network is composed
by 22 devices: one router, seven switches and fourteen virtual machines. The dataset
contains 21442 event traces, divided into 84 different types of events classified into four
different severity categories: Critical (4 types of events), Major (11), Minor (7) and No
Severity (64). These events range from CPU overload on a host to trivial network status
messages.

Our goal was to predict the appearance of events of a given type in a device, so the number
of types of events of interest has an upper bound of 1848 (84 different types times 22
devices), but the actual number is 575 - lower than threshold as not all types of events
happen in all devices. The dataset shows a very sparse rate of events arrival -the busiest 5
minutes period accounted for 503 events.

We first performed preliminary time series analysis of the recorded events, revealing no
periodicity in the data. Hereafter, we explored Machine Learning prediction techniques such
as Random Forests. In order to apply this technique, we first had to train a model from the
historic event dataset that captures the behaviour of the managed system. This first phase is
called training. The created model - a forest of decision trees - will be used to predict future
failures from the live feed of management events.

As predictions were to be executed online, we set sliding time windows [4] for both past
events to consider as well as future predictions. The system uses the trained model to
predict what might happen on a prediction window, based on past occurrences from the
observation window. Observation windows with the recent events are generated periodically

2

Page 2 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

and sent as a stream of events to the prediction element. Some of the design parameters
are:

● time unit: discrete time interval in which an event can be observed. Burstiness
analysis from our dataset revealed that one second was accurate enough for our
dataset. Multiple events of the same type happening in the same time unit are
indistinguishable from a single occurrence.

● the observation window is the period of time the prediction system considers past
events in order to perform a prediction. In our case, previous analysis of predictive
power with different window lengths led us to use a 5-minute observation window.

● the prediction window is the period of time in the future for which a prediction is
made. A 5-minute window length was defined as it was deemed to be a reasonable
trade-off between prediction accuracy and notice time to address the incoming
incident by system administrators before it actually happens. Note the prediction
function does not aim to specify the exact time within the window when the event will
happen if predicted.

● model features: the occurrence or not of a type of event in an element of the
managed system. Management systems usually have a large number of event types
- 575 for ours; but usually only a fraction of them require reaction, those marked as
Critical and Major. Hence, we only predict the critical and major events that may
happen in each network node, although all types are considered to create the
predictors.

We designed a system providing these main functions: 1) to train Random Forest predictive
models based on the historical dataset of management events, 2) to transfer the models to
the online prediction part, and 3) to predict critical and major events in a time-ahead window
based on the observation window events stream, while trying to incur in minimal latency. We
describe the system architecture in the following subsection.

2.1. System Architecture
The system architecture is composed by two main subsystems, as depicted in Fig 1. The
training subsystem (upper side) performs offline computations from past event data collected
from the management system. The prediction subsystem (lower side) performs online failure
prediction based on the events captured by the management system and the trained
decision model.

The input to our system is the stream of events obtained by the management system, rather
than the metrics on network and resource usage collected from the managed system. This
way, we isolate the prediction system from the managed network, as only a direct
communication socket between the predictor and the management system is required.

3

Page 3 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

Fig. 1: OFP system Architecture

We chose the “data flow” architectural pattern to develop the prediction system, as it nicely
fits to the transformation of streams of events that we get as input. Data flow architecture
defines the data ingestion and the sequence of transformations to be performed up to the
final result. The event streams generated by the management system are aggregated and
sliced into observation windows; the prediction subsystem predicts future events in the
lookahead window based on this input.

We have chosen Apache Spark 1.6.0 as the base processing platform for the failure 1

prediction system. Spark provides a dataflow programming model with in-memory
computations, automatically distributing Resilient Distributed Datasets [9], and processing
them in parallel across the computation cluster. Spark also supports the micro batch stream
processing model through Spark Streaming [10], where events from a stream are
automatically aggregated in computation windows, and processed generating an output
stream. While the micro batch model introduces a minimum delay (about 1 second), this time
resolution is appropriate to perform event ingestion for network and system management
purposes, in particular for prediction [5]. The processing platform can distribute each single
transformation to a different processor or core, allowing the ingestion of a large number of
events and the execution of many predictions at once if required.

We built on top of Spark MLLib for our Random Forest implementation. This library has been
shown to be the most appropriate option to implement stream-based machine learning
systems, over other similar systems such as Apache Storm, or Spark ML [11--13]. We must
note though that, while Spark abstracts from many complexities of writing parallel programs,
implementing complex processing flows that process large amounts of data require
significant tuning and experimentation [14]. We will share our experience building the system
in the following subsections.

1 http://spark.apache.org , last accessed June 2017

4

Page 4 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://spark.apache.org/

For Review
 O

nly

2.2. The training subsystem
The upper part of Fig. 1 shows the training subsystem, which takes as input the historic
dataset of events in order to train the Random Forest ensemble model. Input data is
organized in text lines that show the occurrence of an event in a node of the managed
network, providing the event type and the time it happened. The management system
transfers this information in batch mode to the HDFS (Hadoop Distributed File System, able 2

to handle large files). The output of the training subsystem is an in-memory Random Forest
prediction model, to be used by the prediction subsystem.

We illustrate an example execution of the training subsystem in the left side of Fig 2, where
a model is built for a dataset containing 4 different event types (for clarity we consider each
event happens in a different node). The HDFS input is an ordered stream of events,
including timestamp information for each event. The windowing process then creates one
five minute observation window every second, for the whole dataset timespan. We create a
Random Forest model for each event we aim to predict (critical and major events on each
network node). The input to train the RF model is the collection of observation windows
(organized as vectors of observed events in each window), annotated with information about
whether the event of interest happened within the prediction window (one 1-element vector
for each event type for each window). For the purposes of training we consider the prediction
window starts right after the end of observation window without delays, and lasts five
minutes. There is one model generator for each event type, taking as input the complete set
observation windows with event appearance annotations. Each model generator will create
the Random Forest model for its type of event.

We tuned the hyperparameters of the RF generation algorithm the following way: we fixed
the number of trees to 50 per predicted event type following the suggestions made on [15];
we set the maximum number of split layers each decision tree can have (maximal depth) to
9, close to the binary log of number of the whole set of types of events (log2(575) ~ 9.16).
We used the Spark MLLib RF training algorithm in our subsystem.

2 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, last accessed June 2017

5

Page 5 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

For Review
 O

nly

Fig. 2: Example execution of the training subsystem(left) and prediction subsystem (right)

After configuring these hyperparameters of the RF model, we trained the system for the
whole array of events in each node. A subset of these models was later selected in the
“Filtering” activity in the training subsystem. As our system is devised as a production
software, we imposed a very strict criterion to accept a model: only the events whose models
got an F1 score [4] higher than 0.75 were accepted for evaluation (F1 score is a value
ranging from 0 to 1, where 1 would be a perfect model, built by taking the false negative, true
positive and false positive cases of a predictor). Regarding evaluation schemes, we used
cross validation, a standard technique for Machine Learning models performance evaluation;
it ensures that every part of the dataset will be part of both the training and testing phase,
something that other evaluation metrics such as the Out of Bag process does not provide.
We applied 10-fold cross validation, in order to reduce the variance as much as possible
without excessively increasing computation time. This final set of Random Forest models is
transferred to the prediction subsystem. In our dataset, out of 84 event types potentially
appearing on 22 network nodes (a maximum of 84*22=1848 different event types), only 108
event types occurred with enough frequency for their Random Forest models to meet the F1
score requirement of 0.75.

Training a set of RF models is a complex, and computationally expensive task, although we
take advantage of RDD transformation parallelization to speed up its completion. Trained
models will keep similar prediction accuracy, as long as the event source does not
experience significant drift, and the model was trained on an information rich dataset

6

Page 6 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

(number of samples, temporal extension, number of appearances of each event type and
relationships between event types).

2.3. The prediction subsystem
The prediction subsystem will load the model trained in the training subsystem, in order to
perform predictions on the stream of management events (lower part of Figure 1). It must be
noted that the prediction phase operates online, in contrast with the offline training phase.
The stream of events is fed to the prediction subsystem through Kafka queues. 3

The prediction flow is shown on the right side of Fig. 2. Each time an observation window
opens, and for the time it lasts, Spark Streaming sets a data chunk with the events
happening during that time span (windowing process). We decided to produce a new
prediction each second for each of the 108 events of interest - as a compromise between
prediction granularity, machine load and capacity to produce understandable results. Each
one of the 108 RF-based event prediction models runs as an independent task that predicts
the appearance of one type of event. Each model is a Random Forest of 50 trees, with
majority voting determining whether the event will happen (or not) at any point during the
prediction window. All the 108 predictions must be made within the one second window,
otherwise the online system becomes saturated. Each prediction window starts right after
the end of its observation window.

This way, each second, 108 positive or negative predictions are obtained about the
appearance of each event over the next 5 minutes (prediction window), based on the
previous 5 minutes (observation window); the combination of window and prediction intervals
means that, for each event of interest in a given second, 300 predictions are open.
Interpreting the semantics of multiple predictions for the same event at once can be
confusing for human operators, increasing the need for adequate visual representations.
Because of that, we designed a visualisation component in order to provide system
administrators with a global overview on both past state and future predictions. The aim of
this visual component is to guide system administrators on corrective actions such as killing
a process, stopping a node or launching a new Web server instance.

Fig. 3: Visualization example

3 http://kafka.apache.org , last accessed September 2017

7

Page 7 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://kafka.apache.org/

For Review
 O

nly

Figure 3 shows part of the visualisation prototype we have developed to help in the
interpretation of results. The x axis shows time, with the vertical line showing the current
time. Different events (type and node) appear at different heights, with horizontal bars
representing that the event is predicted to occur over the segment time range. Points
represent the occurrence of non-interesting events. Let us remark that, for a positive
prediction (the event is expected to happen), no indication is given about the specific time of
the potential appearance of the predicted event; instead, the event would appear at any time
of the prediction window if the forecast is positive; it might even appear more than once.
Hence, segments on the right hand side of the vertical line represent current positive
predictions of events, whereas past events and predictions appear on the left of the timeline.
We visualise the outcome of our predictions with the following representation:

● The event was predicted to happen and it does - for the remaining prediction window
this is marked as True Positive - it is signalled with a small circle over the bar that
marks the prediction (on times: -3.2 minutes in top event timeline #1, -0.4 minutes on
the second timeline #2, 0 minutes on the fifth one #3).

● The event was predicted to happen and it does not - this can only be known at the
end of the prediction window and it renders a False Positive. This appears as a
prediction window that finishes without the actual appearance of the event; it is
marked with a cross (see the end of the third event timeline from the top #4).

● The event was not predicted to happen but it does happen. Whenever a critical or
major event appears without a prediction bar, this can be labelled as a False
Negative (the isolated cross at -2 minutes #5).

● The event was not predicted to happen and it does not - which can only be ensured
at the end of the prediction window and renders a True Negative. Nothing is shown
so visualization is kept simple.

We deployed the complete system , both training and prediction subsystems, in two different

4

settings: a laptop equipped with an Intel i7-3720QM 2.6GHz processor, 8 virtual cores with
HyperThreading, 16GB of RAM running Ubuntu x64 15.10 as operating system; and a
hardware cluster composed by the master machine and seven workers - each node is a HP
ProLiant SL210t G8 with 2 Intel Xeon processors E5-2630v2 (2.6 GHz), 6 cores each, for 12
physical cores (up to 24 logical cores with HyperThreading); 32 GB of RAM and 3TB SATA
storage.

We measured the memory requirements of the trained models, and found an upper limit of
4.4 MB per model, rendering the total memory size for a production system at most at 108 *
4.4 = 475.2 MB. Although additional memory is required for the observation and prediction
windows, this figure is fairly low.

The prediction process inserts a delay between the end of the observation window and the
start of the prediction window; this delay cannot be higher than the prediction update period.
Otherwise, saturation would happen. In our experiments on both deployment settings we
found that predicting the occurrence of all 108 events of interest took around 350

4 The code is available at https://github.com/jandion/SparkOFP, accessed Sep 2017.

8

Page 8 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://github.com/jandion/SparkOFP

For Review
 O

nly

milliseconds in the portable computer, and 330 in the cluster. Each prediction requires
traversing all trees in the model, rounding up to treesPerModel * number of models = 50 *
108 = 5400 decision trees. Trees have a variable number of depth levels, as 9 is just each
tree’s depth upper bound. This suggests that Spark’s scheduling algorithms are working far
from the saturation level. Both deployments show an adequate latency and capacity for the
problem at hand, and seem to provide a valid basis for more demanding environments.
Performance of the prediction phase depends on the number of event types of interest, the
length of the prediction window and the time pace new prediction windows are opened, more
than on the actual number of events in each observation window.

We tested the prototype in a practical setting, over a validation period of 3 months. The
visualisation functionality received very positive feedback from system administrators, as
they detected numerous critical or major events prior to appearance, having additional time
to solve the problem following their in-house practices. The quality of the predictions was
high, as we expected after the rigorous filtering process performed when selecting
predictors; F1 score values for the 108 event types comprising critical and major events
varied between 0.75 and 0.98.

3. Conclusions
In summary, we have shown how to build a proactive fault management system based on
Random Forest. Both the training and the prediction processes are supported by the same
architecture, analyzing the events emitted by the management system. Configuration
parameters have been carefully chosen to optimize the quality of the predictors while
keeping the computation time at a minimum. The usage of an online processing engine such
as Spark, enhanced with the Spark Streaming module and the implementation of Random
Forest algorithm in Spark MLLib, proved suitable to build such a prediction system.

Our future plans are to test and compare additional predictive techniques or ensembles of
these. We are particularly interested in techniques capable of incremental training, as they
would be suitable even under changes to the network topology. This approach would also
require the application of different architectural patterns; working with different datasets to
identify the conditions for application, and adding diagnosis capabilities.

Bibliography
[1] Guan, Qiang, and Song Fu. "auto-AID: A data mining framework for autonomic anomaly
identification in networked computer systems." International Performance Computing and
Communications Conference. IEEE, 2010.
[2] Zaman, Faisal, et al. "A recommender system architecture for predictive telecom network
management." IEEE Communications Magazine 53.1 (2015): 286-293.
[3] Chaparadza, Ranganai. "UniFAFF: a unified framework for implementing autonomic fault
management and failure detection for self-managing networks." International Journal of Network
Management 19.4 (2009): 271-290.
[4] Salfner, Felix, Maren Lenk, and Miroslaw Malek. "A survey of online failure prediction methods."
ACM Computing Surveys (CSUR) 42.3 (2010): 10.

9

Page 9 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review
 O

nly

[5] Kalegele, Khamisi, et al. "Four Decades of Data Mining in Network and Systems Management."
IEEE Transactions on Knowledge and Data Engineering 27.10 (2015): 2700-2716.
[6] Rokach, Lior. "Decision forest: Twenty years of research." Information Fusion27 (2016): 111-125.
[7] Pitakrat, Teerat, André van Hoorn, and Lars Grunske. "A comparison of machine learning
algorithms for proactive hard disk drive failure detection." Proceedings of the 4th international ACM
Sigsoft symposium on Architecting critical systems. ACM, 2013.
[8] Buczak, A. L., & Guven, E. (2015). A survey of data mining and machine learning methods for
cyber security intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153-1176.
[9] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing." Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012.
[10] Zaharia, Matei, et al. "Discretized streams: an efficient and fault-tolerant model for stream
processing on large clusters." HotCloud, 2012, vol. 12, p. 10-16.
[11] Zheng, Jiang, and Aldo Dagnino. "An initial study of predictive machine learning analytics on
large volumes of historical data for power system applications." In IEEE International Conference on
Big Data (Big Data), 2014. IEEE, 2014.
[12] Richter, Aaron N., et al. "A Multi-Dimensional Comparison of Toolkits for Machine Learning with
Big Data." In IEEE International Conference on Information Reuse and Integration (IRI), 2015. IEEE,
2015.
[13] Sun, Ke, et al. "An Improvement to Feature Selection of Random Forests on Spark." In IEEE 17th
International Conference on Computational Science and Engineering (CSE), 2014. IEEE, 2014.
[14] Landset, Sara, et al. "A survey of open source tools for machine learning with big data in the
Hadoop ecosystem." Journal of Big Data 2.1 (2015): 1.
[15] Oshiro, Thais Mayumi, Pedro Santoro Perez, and José Augusto Baranauskas. "How many trees
in a random forest?." International Workshop on Machine Learning and Data Mining in Pattern
Recognition. Springer Berlin Heidelberg, 2012.

More information about the dataset and the model training process can be found on several annexes
at: https://goo.gl/kThRgD.

Acknowledgments

The authors would like to express their gratitude to Produban, who inspired and motivated
this challenge as a real business case and provided all necessary assistance to carry out
this work. The work performed by José M. Navarro has been funded by Ministerio de
Educación de España under grant BFPU-2014-03209.

Biographies
Juan C. Dueñas [SM] (juancarlos.duenas@upm.es) obtained a Degree on
Telecommunications Engineering by Universidad Politécnica de Madrid, Spain, 1991, and a
PhD by UPM in 1994. He is currently Deputy Vice-President for Research in Universidad
Politécnica de Madrid.

José M. Navarro (josemanuel.navarro@upm.es) obtained an MSc on
Telecommunications Engineering by Universidad Miguel Hernández de Elche, Spain on
2013. He is a PhD candidate at Escuela Técnica Superior de Ingenieros de

10

Page 10 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://goo.gl/kThRgD

For Review
 O

nly

Telecomunicación in UPM, Madrid, Spain. His research interests are distributed systems
management through applied machine learning and the Internet of Things.

Hugo A. Parada G. (hugo.parada@upm.es) is an Assistant Professor in Universidad
Politécnica de Madrid (UPM) at Escuela Técnica Superior de Ingeniería y Sistemas de
Telecomunicación. His current areas of research include machine learning, big data, and
cloud computing. He received his Ph.D. in Telecommunications engineering from UPM in
2010.

Javier Andión [M] (j.andion@upm.es) is a Telecommunications Engineer by Universidad
Politécnica de Madrid, Spain. He is pursuing a PhD on proactive failure prediction with
Machine Learning at Escuela Técnica Superior de Ingenieros de Telecomunicación in UPM,
Madrid, Spain. He has been involved in the organization of several workshops and congress
related with artificial intelligence, robotics and programming challenges.

Félix Cuadrado [M] (felix.cuadrado@qmul.ac.uk) is Senior Lecturer (Associate Professor)
in the School of Electronic Engineering and Computer Science of Queen Mary University of
London. He obtained a MEng in Telecommunications Engineering from UPM in 2005, and a
PhD from UPM in 2009. His research interests include large-scale data processing systems,
and Internet-scale applications.

11

Page 11 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

