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Abstract 
Predicting failures on networks and systems is critical in order to maintain high uptime rates.               
Online Failure Prediction (OFP) techniques use machine learning and predictive analytics to            
generate failure models that can be applied to computer network data. These techniques             
can be provisioned on state of the art stream processing systems, such as Spark Streaming,               
in order to cope with the scalability challenges from the base data. A big challenge with OFP                 
is selecting the right information to process, as well as the appropriate features in order to                
achieve high accuracy in predicting failures on complex, interconnected systems. In this            
paper we describe an Online Failure Prediction system built over Apache Spark that takes a               
repository of network management events, trains a Random Forest model and uses this             
model to predict the appearance of future events in near real time. We show through our                
experiments the usefulness of network management events for accurate predictions, and the            
advantages of the proposed system in terms of predictive quality, cost and ease of              
deployment. 

1. Online Failure Prediction in practice 
Effective management of large-scale distributed systems requires a proactive approach to           
failure management. Current research efforts propose self diagnosing systems [1--3] that           
forecast their future state in order to predict failures, thus reducing the time to repair. Online                
Failure Prediction (OFP) [4] aims to provide accurate predictions with minimal intrusiveness,            
observing the current state of the system and applying prediction rules to foresee future              
states. OFP techniques frequently define their prediction rules based on the experience of             
domain experts and system administrators.  
 
Recently, Machine Learning prediction methods have been applied to Network Management           
systems [5]. Unlike traditional approaches, these algorithms achieve high accuracy by           
automatically detecting rules and patterns from the studied system. Ensemble methods,           
such as Random Forest [6], have become one of most promising machine learning             
approaches for prediction. These techniques train an ensemble of hundreds of simple            
models, combining their individual results to capture feature interactions, providing highly           
accurate predictions. Random Forest methods have been successfully applied to several           
network management problems, such as hardware failure prediction [7], and network           

1 

Page 1 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

 

intrusion detection [8].  
 
However, ensemble methods are challenging to implement in online scenarios with strict            
time prediction requirements; these techniques require training and executing a large           
number of models, which can be challenging to accomplish within strict temporal prediction             
deadlines. On the other hand, state-of-the-art distributed stream processing platforms such           
as Apache Storm and Spark Streaming [9], are a natural candidate to enable timely accurate               
predictions over a large volume of event data. 
  
This paper presents an online failure prediction system for network events based on             
ensemble methods. The system performs live predictions with high scalability, exploiting           
Apache Spark to parallelize model training and prediction tasks. We validated the system             
with an industrial dataset of network management events from a major Spanish bank. We              
also present the main requirements and design decisions of the system, as we believe they               
can be applicable to other online network management scenarios.  

2. The Failure Prediction System 
The motivation of our work was to aid a Spanish bank to design a proactive management                
system enabling system administrators to react to critical events before they appear on this              
network. We worked with a dataset of network management events occurring at the bank              
datacenter between September 2014 and June 2015. The managed network is composed            
by 22 devices: one router, seven switches and fourteen virtual machines. The dataset             
contains 21442 event traces, divided into 84 different types of events classified into four              
different severity categories: Critical (4 types of events), Major (11), Minor (7) and No              
Severity (64). These events range from CPU overload on a host to trivial network status               
messages. 
 
Our goal was to predict the appearance of events of a given type in a device, so the number                   
of types of events of interest has an upper bound of 1848 (84 different types times 22                 
devices), but the actual number is 575 - lower than threshold as not all types of events                 
happen in all devices. The dataset shows a very sparse rate of events arrival -the busiest 5                 
minutes period accounted for 503 events. 
 
We first performed preliminary time series analysis of the recorded events, revealing no             
periodicity in the data. Hereafter, we explored Machine Learning prediction techniques such            
as Random Forests. In order to apply this technique, we first had to train a model from the                  
historic event dataset that captures the behaviour of the managed system. This first phase is               
called training. The created model - a forest of decision trees - will be used to predict future                  
failures from the live feed of management events. 
 
As predictions were to be executed online, we set sliding time windows [4] for both past                
events to consider as well as future predictions. The system uses the trained model to               
predict what might happen on a prediction window, based on past occurrences from the              
observation window. Observation windows with the recent events are generated periodically           
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and sent as a stream of events to the prediction element. Some of the design parameters                
are: 

● time unit: discrete time interval in which an event can be observed. Burstiness             
analysis from our dataset revealed that one second was accurate enough for our             
dataset. Multiple events of the same type happening in the same time unit are              
indistinguishable from a single occurrence. 

● the observation window is the period of time the prediction system considers past             
events in order to perform a prediction. In our case, previous analysis of predictive              
power with different window lengths led us to use a 5-minute observation window. 

● the prediction window is the period of time in the future for which a prediction is                
made. A 5-minute window length was defined as it was deemed to be a reasonable               
trade-off between prediction accuracy and notice time to address the incoming           
incident by system administrators before it actually happens. Note the prediction           
function does not aim to specify the exact time within the window when the event will                
happen if predicted. 

● model features: the occurrence or not of a type of event in an element of the                
managed system. Management systems usually have a large number of event types            
- 575 for ours; but usually only a fraction of them require reaction, those marked as                
Critical and Major. Hence, we only predict the critical and major events that may              
happen in each network node, although all types are considered to create the             
predictors. 

 
We designed a system providing these main functions: 1) to train Random Forest predictive              
models based on the historical dataset of management events, 2) to transfer the models to               
the online prediction part, and 3) to predict critical and major events in a time-ahead window                
based on the observation window events stream, while trying to incur in minimal latency. We               
describe the system architecture in the following subsection.  
  

2.1. System Architecture 
The system architecture is composed by two main subsystems, as depicted in Fig 1. The               
training subsystem (upper side) performs offline computations from past event data collected            
from the management system. The prediction subsystem (lower side) performs online failure            
prediction based on the events captured by the management system and the trained             
decision model. 
 
The input to our system is the stream of events obtained by the management system, rather                
than the metrics on network and resource usage collected from the managed system. This              
way, we isolate the prediction system from the managed network, as only a direct              
communication socket between the predictor and the management system is required. 
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Fig. 1: OFP system Architecture 

 
We chose the “data flow” architectural pattern to develop the prediction system, as it nicely               
fits to the transformation of streams of events that we get as input. Data flow architecture                
defines the data ingestion and the sequence of transformations to be performed up to the               
final result. The event streams generated by the management system are aggregated and             
sliced into observation windows; the prediction subsystem predicts future events in the            
lookahead window based on this input.  
 
We have chosen Apache Spark 1.6.0 as the base processing platform for the failure              1

prediction system. Spark provides a dataflow programming model with in-memory          
computations, automatically distributing Resilient Distributed Datasets [9], and processing         
them in parallel across the computation cluster. Spark also supports the micro batch stream              
processing model through Spark Streaming [10], where events from a stream are            
automatically aggregated in computation windows, and processed generating an output          
stream. While the micro batch model introduces a minimum delay (about 1 second), this time               
resolution is appropriate to perform event ingestion for network and system management            
purposes, in particular for prediction [5]. The processing platform can distribute each single             
transformation to a different processor or core, allowing the ingestion of a large number of               
events and the execution of many predictions at once if required. 
  
We built on top of Spark MLLib for our Random Forest implementation. This library has been                
shown to be the most appropriate option to implement stream-based machine learning            
systems, over other similar systems such as Apache Storm, or Spark ML [11--13]. We must               
note though that, while Spark abstracts from many complexities of writing parallel programs,             
implementing complex processing flows that process large amounts of data require           
significant tuning and experimentation [14]. We will share our experience building the system             
in the following subsections.  

1  http://spark.apache.org , last accessed June 2017 
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2.2. The training subsystem 
The upper part of Fig. 1 shows the training subsystem, which takes as input the historic                
dataset of events in order to train the Random Forest ensemble model. Input data is               
organized in text lines that show the occurrence of an event in a node of the managed                 
network, providing the event type and the time it happened. The management system             
transfers this information in batch mode to the HDFS (Hadoop Distributed File System, able              2

to handle large files). The output of the training subsystem is an in-memory Random Forest               
prediction model, to be used by the prediction subsystem. 
 
We illustrate an example execution of the training subsystem in the left side of Fig 2, where                 
a model is built for a dataset containing 4 different event types (for clarity we consider each                 
event happens in a different node). The HDFS input is an ordered stream of events,               
including timestamp information for each event. The windowing process then creates one            
five minute observation window every second, for the whole dataset timespan. We create a              
Random Forest model for each event we aim to predict (critical and major events on each                
network node). The input to train the RF model is the collection of observation windows               
(organized as vectors of observed events in each window), annotated with information about             
whether the event of interest happened within the prediction window (one 1-element vector             
for each event type for each window). For the purposes of training we consider the prediction                
window starts right after the end of observation window without delays, and lasts five              
minutes. There is one model generator for each event type, taking as input the complete set                
observation windows with event appearance annotations. Each model generator will create           
the Random Forest model for its type of event. 
 
We tuned the hyperparameters of the RF generation algorithm the following way: we fixed              
the number of trees to 50 per predicted event type following the suggestions made on [15];                
we set the maximum number of split layers each decision tree can have (maximal depth) to                
9, close to the binary log of number of the whole set of types of events (log2(575) ~ 9.16).                   
We used the Spark MLLib RF training algorithm in our subsystem. 

 

2  https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html, last accessed June 2017 

5 

Page 5 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html


For Review
 O

nly

 

 
Fig. 2: Example execution of the training subsystem(left) and prediction subsystem (right) 

 
After configuring these hyperparameters of the RF model, we trained the system for the              
whole array of events in each node. A subset of these models was later selected in the                 
“Filtering” activity in the training subsystem. As our system is devised as a production              
software, we imposed a very strict criterion to accept a model: only the events whose models                
got an F1 score [4] higher than 0.75 were accepted for evaluation (F1 score is a value                 
ranging from 0 to 1, where 1 would be a perfect model, built by taking the false negative, true                   
positive and false positive cases of a predictor). Regarding evaluation schemes, we used             
cross validation, a standard technique for Machine Learning models performance evaluation;           
it ensures that every part of the dataset will be part of both the training and testing phase,                  
something that other evaluation metrics such as the Out of Bag process does not provide.               
We applied 10-fold cross validation, in order to reduce the variance as much as possible               
without excessively increasing computation time. This final set of Random Forest models is             
transferred to the prediction subsystem. In our dataset, out of 84 event types potentially              
appearing on 22 network nodes (a maximum of 84*22=1848 different event types), only 108              
event types occurred with enough frequency for their Random Forest models to meet the F1               
score requirement of 0.75. 
 
Training a set of RF models is a complex, and computationally expensive task, although we               
take advantage of RDD transformation parallelization to speed up its completion. Trained            
models will keep similar prediction accuracy, as long as the event source does not              
experience significant drift, and the model was trained on an information rich dataset             
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(number of samples, temporal extension, number of appearances of each event type and             
relationships between event types). 

2.3. The prediction subsystem 
The prediction subsystem will load the model trained in the training subsystem, in order to               
perform predictions on the stream of management events (lower part of Figure 1). It must be                
noted that the prediction phase operates online, in contrast with the offline training phase.              
The stream of events is fed to the prediction subsystem through Kafka  queues. 3

 
The prediction flow is shown on the right side of Fig. 2. Each time an observation window                 
opens, and for the time it lasts, Spark Streaming sets a data chunk with the events                
happening during that time span (windowing process). We decided to produce a new             
prediction each second for each of the 108 events of interest - as a compromise between                
prediction granularity, machine load and capacity to produce understandable results. Each           
one of the 108 RF-based event prediction models runs as an independent task that predicts               
the appearance of one type of event. Each model is a Random Forest of 50 trees, with                 
majority voting determining whether the event will happen (or not) at any point during the               
prediction window. All the 108 predictions must be made within the one second window,              
otherwise the online system becomes saturated. Each prediction window starts right after            
the end of its observation window. 
 
This way, each second, 108 positive or negative predictions are obtained about the             
appearance of each event over the next 5 minutes (prediction window), based on the              
previous 5 minutes (observation window); the combination of window and prediction intervals            
means that, for each event of interest in a given second, 300 predictions are open.               
Interpreting the semantics of multiple predictions for the same event at once can be              
confusing for human operators, increasing the need for adequate visual representations.           
Because of that, we designed a visualisation component in order to provide system             
administrators with a global overview on both past state and future predictions. The aim of               
this visual component is to guide system administrators on corrective actions such as killing              
a process, stopping a node or launching a new Web server instance.  

 
Fig. 3: Visualization example 

3  http://kafka.apache.org ,  last accessed September 2017 

7 

Page 7 of 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://kafka.apache.org/


For Review
 O

nly

 

 
Figure 3 shows part of the visualisation prototype we have developed to help in the               
interpretation of results. The x axis shows time, with the vertical line showing the current               
time. Different events (type and node) appear at different heights, with horizontal bars             
representing that the event is predicted to occur over the segment time range. Points              
represent the occurrence of non-interesting events. Let us remark that, for a positive             
prediction (the event is expected to happen), no indication is given about the specific time of                
the potential appearance of the predicted event; instead, the event would appear at any time               
of the prediction window if the forecast is positive; it might even appear more than once.                
Hence, segments on the right hand side of the vertical line represent current positive              
predictions of events, whereas past events and predictions appear on the left of the timeline.               
We visualise the outcome of our predictions with the following representation: 

● The event was predicted to happen and it does - for the remaining prediction window               
this is marked as True Positive - it is signalled with a small circle over the bar that                  
marks the prediction (on times: -3.2 minutes in top event timeline #1, -0.4 minutes on               
the second timeline #2, 0 minutes on the fifth one #3).  

● The event was predicted to happen and it does not - this can only be known at the                  
end of the prediction window and it renders a False Positive. This appears as a               
prediction window that finishes without the actual appearance of the event; it is             
marked with a cross (see the end of the third event timeline from the top #4). 

● The event was not predicted to happen but it does happen. Whenever a critical or               
major event appears without a prediction bar, this can be labelled as a False              
Negative (the isolated cross at -2 minutes #5). 

● The event was not predicted to happen and it does not - which can only be ensured                 
at the end of the prediction window and renders a True Negative. Nothing is shown               
so visualization is kept simple. 

 
We deployed the complete system , both training and prediction subsystems, in two different             

4

settings: a laptop equipped with an Intel i7-3720QM 2.6GHz processor, 8 virtual cores with              
HyperThreading, 16GB of RAM running Ubuntu x64 15.10 as operating system; and a             
hardware cluster composed by the master machine and seven workers - each node is a HP                
ProLiant SL210t G8 with 2 Intel Xeon processors E5-2630v2 (2.6 GHz), 6 cores each, for 12                
physical cores (up to 24 logical cores with HyperThreading); 32 GB of RAM and 3TB SATA                
storage. 
 
We measured the memory requirements of the trained models, and found an upper limit of               
4.4 MB per model, rendering the total memory size for a production system at most at 108 *                  
4.4 = 475.2 MB. Although additional memory is required for the observation and prediction              
windows, this figure is fairly low. 
 
The prediction process inserts a delay between the end of the observation window and the               
start of the prediction window; this delay cannot be higher than the prediction update period.               
Otherwise, saturation would happen. In our experiments on both deployment settings we            
found that predicting the occurrence of all 108 events of interest took around 350              

4  The  code is available at https://github.com/jandion/SparkOFP, accessed Sep 2017. 
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milliseconds in the portable computer, and 330 in the cluster. Each prediction requires             
traversing all trees in the model, rounding up to treesPerModel * number of models = 50 *                 
108 = 5400 decision trees. Trees have a variable number of depth levels, as 9 is just each                  
tree’s depth upper bound. This suggests that Spark’s scheduling algorithms are working far             
from the saturation level. Both deployments show an adequate latency and capacity for the              
problem at hand, and seem to provide a valid basis for more demanding environments.              
Performance of the prediction phase depends on the number of event types of interest, the               
length of the prediction window and the time pace new prediction windows are opened, more               
than on the actual number of events in each observation window. 
 
We tested the prototype in a practical setting, over a validation period of 3 months. The                
visualisation functionality received very positive feedback from system administrators, as          
they detected numerous critical or major events prior to appearance, having additional time             
to solve the problem following their in-house practices. The quality of the predictions was              
high, as we expected after the rigorous filtering process performed when selecting            
predictors; F1 score values for the 108 event types comprising critical and major events              
varied between 0.75 and 0.98.  

3. Conclusions 
In summary, we have shown how to build a proactive fault management system based on               
Random Forest. Both the training and the prediction processes are supported by the same              
architecture, analyzing the events emitted by the management system. Configuration          
parameters have been carefully chosen to optimize the quality of the predictors while             
keeping the computation time at a minimum. The usage of an online processing engine such               
as Spark, enhanced with the Spark Streaming module and the implementation of Random             
Forest algorithm in Spark MLLib, proved suitable to build such a prediction system. 
 
Our future plans are to test and compare additional predictive techniques or ensembles of              
these. We are particularly interested in techniques capable of incremental training, as they             
would be suitable even under changes to the network topology. This approach would also              
require the application of different architectural patterns; working with different datasets to            
identify the conditions for application, and adding diagnosis capabilities. 
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