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ABSTRACT
�e property graph model has recently gained signi�cant popu-
larity, combining great expressiveness with powerful declarative
graph query languages. However, in order to take advantage of
these features, data must be loaded into a specialised graph database.
Additionally, property graphs are o�en schema-free, complicating
e�cient query execution. In this paper we present Cytosm, a mid-
dleware application which enables the execution of property graph
queries, on non-graph databases, without data migration. Cytosm
relies on gTop, a schema containing an abstract property graph
topology, and its mapping to speci�c database backends. Cytosm
uses gTop to e�ciently execute OpenCypher queries, exploiting
schema information to optimise the query plan, and mapping query
concepts to the relational backend. Our experiments show that
Cytosm achieves competitive query execution times on relational
backends, when compared to leading graph databases.
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1 INTRODUCTION
Property Graphs provide a simple method to represent complex
information as a network of entities (nodes) interconnected via
relationships (edges). �is alongside domain-speci�c declarative
query languages, such as OpenCypher, provides a powerful new
way to store, process and understand data. Unfortunately, especially
in larger companies, data is frequently stored in non graph-speci�c
databases. When managing up to Petabytes of information, the
advantages gained from newer graph systems seldom outweigh
the extra storage, complexity and Extract Transform Load (ETL)
processing required to update their infrastructure.
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In this paper we present Cytosm (Cypher to sql mapping): a mid-
dleware application which enables the execution of graph queries,
on non graph databases, without data migration. Furthermore, we
present gTop, a schema-like format which captures the structure
of property graphs, providing a �exible mapping between Graph
�ery Languages (GQL’s) and a variety of underlying database sys-
tems. �e most signi�cant parts of Cytosm have now been released
as open source1.

Our experimentation shows that OpenCypher queries translated
via Cytosm have a similar execution time to manually tailored SQL
queries and, perhaps more surprisingly, have times comparable to
the same queries executing on leading dedicated graph databases.

�e rest of this paper is organised as follows: Section 2 discusses
the components of a graph topology (gTop) �le, how the mapping
is implemented and methods of gTop generation; Section 3 explains
the full translation pipeline, showing how an OpenCypher query
is broken down and converted into an e�cient SQL alternative;
Section 4 evaluates the performance of Cytosm compared to a dedi-
cated graph database and other state-of-the-art solutions; Section 5
looks at related works within this area; Section 6 highlights the
main �ndings of this work.

2 GTOP: MAPPING PROPERTY GRAPHS
�e Property Graph model presents powerful semantics for infor-
mation representation, with the application of declarative query
languages, such as OpenCypher and Gremlin, becoming increas-
ingly popular amongst the community. Our motivation with gTop
was to propose a �exible way to decouple these Property Graph con-
cepts from domain-speci�c Online Transaction Processing (OLTP)
systems, providing the community with a wider range of storage
options when graph queries are to be supported.

A gTop �le is composed of two core sections: anAbstract Property
Graph model and a mapping to a speci�c storage implementation.
�e abstract section speci�es the inherent structure of the Property
Graph, de�ning the available vertex and edge types, together with
the properties they contain. Graph entity instances of the same
type will then share matching property keys, but may have dif-
ferent corresponding values. �is is comparable to the relational
schema popular within the RDBMS domain. A Property Graph
model example can be seen in Figure 1. Figure 2 takes one relation
from this to demonstrate how it would be mapped in a gTop �le.
�e top layer of Figure 2 contains a node of type Person connected

1h�ps://github.com/cytosm/cytosm
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Figure 1: Abstract gTop model representing a subset of the
Linked Data Benchmark Council (LDBC) Social Network
data-schema. Edge and node properties are inside boxes.

through an outgoing edge of type Likes to a node of type Message.
�is is serialised into a gTop Abstract (stored in JSON) containing
high level information such as entity type and a�ributes.

�e gTop implementation section then de�nes how these abstract
entities map to a speci�c storage technology, such as a traditional
relational database. For a relational backend, nodes will be mapped
to rows within tables, whilst edges may be represented as either
�elds within these rows or as a sequence of table-join operations.
�is is demonstrated in the bo�om layer of Figure 2. Here node
type Person is mapped 1:1 with a database table of the same name.
�e Message type is actually two tables in the underlying database
(Post and Comment) which would be joined via a union. Finally,
the edge Likes is also split between two tables (Person Likes Post
and Person Likes Comment). �ese are, however, not permanent
tables, but instead join tables connecting tuples in Person to those
in Post/Comment based on the foreign keys they contain.

gTop was designed to support automatic generation via database
analysis techniques, such as DDL analysis for normalised tables
(similar to [1, 14]), or more re�ned functional dependency anal-
ysis based on FDEP [3]. �ese techniques have been utilised to
create gTop �les for a variety of datasets, including Microso�’s
Northwind[9] and the full LDBC-SNB graph[5]. Cytosm’s docu-
mentation contains full details on the generation/mapping process,
along with these example gTop �les2.

3 GRAPH QUERY CONVERSION
Pa�ern-based GQL’s, such as OpenCypher and PGQL, try to �nd
pa�erns in graph data, matching the inserted query to Regular
Path �eries (RPQ’s) [13]. As OpenCypher is schemaless, the
usual approach in exploring these paths is brute force, querying
all possible node/edge combinations within the RPQ’s and �ltering
the results at the end. In this section we present how gTop models
can be exploited to massively reduce the required search space and

2See h�ps://github.com/cytosm/cytosm/blob/master/common/

Figure 2: gTop modelling from LDBC data.

e�ciently execute OpenCypher �eries (OCQ’s) on any arbitrary
database. �is process consists of two modules: Path�nder and the
OpenCypher to SQL converter.

�e split between Path�nder and OpenCypher to SQL coincides
with the two sections found within gTop. Firstly, Path�nder takes
the original OCQ and uses the gTop’s abstract section to obtain a set
of restricted OpenCypher �eries (rOCQ’s). �ese rOCQ’s contain
no multi-hop edges or anonymous entities (as these cannot be
mapped to SQL) and each speci�es an explicit path from the original
OCQ. OpenCypher to SQL then takes this set and uses the gTop’s
implementation section to map each rOCQ to an equivalent SQL
query, which may be run on the underlying non-graph database. All
the results are then unionised to return the information requested
by the original OCQ.

3.1 Path�nder
Enabling RPQ’s for pa�ern-matching provides powerful expressive-
ness for application users. �ese do, however, require translating
into paths contained within the graph data. Path�nder is a query
‘preplanner’ which utilises the gTop abstract model to e�ciently
prune the search space from erroneous combinations and reduce
unnecessary storage fetches.

Listing 1 shows an example OpenCypher�ery. On line 1 and 2
the content a�er the ‘Match’ keywords are OpenCypher pa�erns,
expressed via an RPQ. An OpenCypher pa�ern is built from a se-
quence of individual node and edge pa�erns, which in turn consist
of labels and a�ribute keys representing at least one entity type
de�ned in the gTop abstract model. Edge pa�erns can also con-
tain additional complexity, de�ning a range of hops between node
pa�erns and the direction of the edge.
1 Match ( p : {” f i r s tName ” : ” John ”} )
2 Match ( p ) − [ ∗ 1 . . 2 ]−> (m: Message )
3 Return p , m. c o n t e n t ;

Listing 1: OpenCypher�ery example
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Path�nder takes this OCQ and the provided gTop abstract and
inserts them into Algorithm 1. �e �rst stage of this process is
hint solving (lines 2-5). �is examines node and edge pa�erns for
information which can narrow the overall search scope. For exam-
ple, the node referenced by variable p has the a�ribute “�rstName”.
Taking the gTop presented in Figure 1 into consideration, this node
must be of type Person3.

Next, multi-hop edges are expanded in order to generate all
possible paths (lines 6-9). As an example, the edge in Listing 1
between p andm contains an asterisk followed by ‘1..2’. �is means
the destination node can be either one or two nodes away from the
starting point (with any node or edge type in-between). �is step
would, therefore, generate two paths which can be seen in Listing 2
below. A set is used to store these paths as duplicates are o�en
generated.
1 ( p : P e r s o n ) −−−> (m: Message )
2 ( p : P e r s o n ) −−−> ( ) −−> (m: Message )

Listing 2: RPQ’s generated from edge expansion

�e �nal step is to ‘solve’ each path by �lling in any anonymous
edges and nodes. �is is done by �nding all the gTop paths that �t
the RPQ pa�ern (lines 10-13). Each pa�ern is solved in parallel by
running a Depth-First Search4 on the gTop, starting from a typed
node. Path�nder then converts the returned set of explicit graph
paths into rOCQ’s (line 14) and passes them to OpenCypher to SQL.
For example, RPQ 1 in Listing 2 has one possible edge type (Likes),
with node type Messaдe refering to either Post or Comment ; this
RPQ is, therefore, expanded into two explicit paths (Line 1 and 2 in
Listing 3). Due to the number of anonymous entities, RPQ 2 is less
straightforward, generating many non-intuitive paths such as Line
3 in Listing 3.
1 ( p : P e r s o n ) − [ : L i k e s ]−>(m: P o s t )
2 ( p : P e r s o n ) − [ : L i k e s ]−>(m: Comment )
3 ( p : P e r s o n ) − [ : Knows ]− > ( : P e r s o n ) − [ : L i k e s ]−>(m: P o s t )

Listing 3: Subset of explicit graph paths

3.2 OpenCypher To SQL
�e set of rOCQ’s created by Path�nder is passed to the Open-
Cypher to SQL converter to translate and execute on the underlying
database. Each rOCQ can be processed independently (enabling
parallelism), through a four stages process. �ese stages are illus-
trated below via the example rOCQ in Listing 4, derived from the
OCQ discussed in the previous section.
1 Match ( p : P e r s o n { ” f i r s tName ” : ” John ” } )
2 Match ( p : P e r s o n ) − [ : L i k e s ]−> (m: P o s t )
3 Return p , m. c o n t e n t ;

Listing 4: rOCQ built from explicit path

Building a Basic AST Tree
When a rOCQ is initially parsed, an Abstract Syntax Tree (AST) is

generated. In the �rst pass over the query, this is analyzed using the
visitor pa�ern in order to build an intermediate SQL representation

3Hints are not always this clean cut and can return multiple possible entity types,
especially for common a�ributes such as ’id’. In this case the di�erent possibilities are
recorded and used in the �nal solving stage as alternative starting points
4Since a gTop abstract model contains the graph topology rather than the graph data
itself, there is usually only a small number of node and edge types, even when the
graph data it models contains billions of node and edge instances.

Algorithm 1: Path�nder
Input :ocq, an OpenCypher�ery

дTop, a gTop �le
Output :rocqs , set of restricted OpenCypher queries matching

the gTop
1 rocqs ←− ∅;
2 hints ←− ocq.scanForHints(дTop);
3 foreach hint h ∈ hints do
4 ocq ←− ocq.replaceHint(h);
5 end
6 paths ←− ∅;
7 foreach rpq r ∈ ocq do
8 paths .add(rpq.expandMultiHopEdдes())
9 end

10 erpqs ←− ∅;
11 foreach path p ∈ paths do
12 erpqs .add(p.solve(дTop));
13 end
14 rocqs ←− erpqs .buildRocqs();

tree. �is tree is made of items that resemble SQL statements and is
later used to render the �nal SQL query. In this form, OpenCypher
information can be represented as an outer SELECT containing
multiple nested “WITH SELECT” items, one for each MATCH. �is
can be seen in the top layer of Figure 3 where the variables returned
by Listing 4 are contained in the Outer SELECT, and each MATCH
is converted into an internal WITH SELECT clause.

Variable Scope and Dependencies
On a second pass through the intermediate SQL tree, variable

scope is analysed to discover which variables require information
from the database, and if there are any dependencies between the
SELECT items. For Listing 4 this would discover that variable p and
m refer to information in the database, and that variable p in the
second WITH SELECT clause is de�ned in the �rst; thus creating a
dependency between them. Furthermore, the Outer SELECT will be
dependent on all the clauses it contains as it returns data from them.

Mapping Nodes to RDBMS
�e third pass utilises the gTop’s implementation layer to map

nodes to the correct underlying database table. For example, p may
be mapped to a table storing information on people, as in Figure 2.
However, it is important to reiterate that an entity type may not
always have a 1:1 mapping. For instance, in a heavily normalised
database, a persons email and phone number may be stored in sep-
arate tables. �is can be seen in the �ird layer of Figure 3 where
SELECT(p) has been converted into UNION(p); containing inner
SELECTS to return data from all tables involved.

Mapping Traversals
Finally, once all nodes are fully mapped, the last pass resolves the

graph edges. �e implementation layer of gTop provides table and
column JOIN information in order to traverse from one node type
to another; allowing new JOIN items to be inserted into the tree.
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�is can be seen in the �nal layer of Figure 3, where the tables are
joined together to form the required Likes edge. Once this process
is �nished, the intermediate SQL tree is ready to be rendered into
SQL statements. �ese can then be executed on the database, and
the results from all rOCQ’s can be joined together and returned to
the user.

Figure 3: OpenCypher to SQL conversion steps

4 EXPERIMENTATION
In this section we show how the gTop model and query planning
contributions perform on a variety of Property Graph �eries
using data generated from the Linked Data Benchmark Council
(LDBC) [5]. LDBC is a EU project to de�ne industry-strength bench-
marks for graph systems. LDBC version 0.2.2 includes a standard
set of queries for each benchmarked platform, implemented by the
respective vendors. Aiming on reproducibility of results, a subset
of the provided Cypher (Neo4j) queries were utilised. Furthermore,
we examined how well Cytosm scales, testing the framework on 1,
3, 10, 30 and 100 Gigabyte datasets.

4.1 Evaluation of Path�nder
Our �rst experiment was to independently evaluate the e�ective-
ness of Path�nder. To do this we took several LDBC queries and

Figure 4: Database hits (on log scale) onNeo4j with andwith-
out the Path�nder module.

executed them on Neo4j v2.3.4/3.0.7 before and a�er Path�nder
processing. As Path�nder is a preprocessing step, the transformed
queries could be run on the same Neo4j engine as their vanilla
equivalent, thus allowing comparison via Neo4j’s ‘database hits’
metric, de�ned as an abstract unit of storage engine work.

Figure 4 plots the results for LDBC queries 6 and 10. Note that
�ery 6 was slightly modi�ed for this test, increasing the range of
hops in the Knows edge from two to four. �is was done to see how
well the system performed on longer multi-hop anonymous queries.
Without Path�nder preprocessing the vanilla Neo4j data engine �rst
retrieved all stored nodes and then sequentially performed expand
and �lter operations. Where expansion explores all connected edges
to a node and �lter removes those not relevant to the query. When
Path�nder was utilised, the query plan appeared to have much
higher parallelism5 in addition to a massive reduction in database
hits. �is translated directly into faster retrieval times and less
stress on the database server. �ese results show that the use of
a schema (gTop abstract), together with a preplanner (Path�nder)
can also bene�t native graph storage systems.

4.2 Evaluation of Cytosm Mapping
�e second experiment aimed to evaluate the e�ciency of Cytosm
running on top of a relational database. �is was done by mapping
the LDBC dataset to Vertica and executing queries transformed via
Cytosm. �e results were then compared to SQLGraph [12], as well
as a vanilla Neo4j v2.3.4 implementation (i.e. without path�nder).
LDBC queries 2 and 6 (modi�ed) were used for this test as they cover
two main query use cases: Data-Fetch (simple relational algebra
operations, such as sorting or selections) and Graph Traversal.

To assess SQLGraph and Neo4j v2.3.4, the proposed data schema
format was implemented on top of MySQL v5.8. Both systems could
then be tested on the same physical machine (containing 8 Intel
Xeon 4870E7 processors and 4TB of RAM). Unfortunately Vertica
can only run in a distributed se�ing, so was tested on a cluster of
three identical servers connected over a 1Gb link. Each server had
2 Intel Xeon X5650 processors and 96GB RAM. All systems were
run on warm cache con�guration, with the exception of MySQL,
which had the query caching disabled. For the query experiments,
4 samples were taken a�er cache warmup. Figure 5 compares the
performance of these systems on Data-Fetch queries (�ery 2). By
using projections, Vertica has the advantage over other databases,
5Neo4j provides a visualisation of its query plan structure; full breakdown of the plo�ed
queries can be found at: h�ps://github.com/cytosm/cytosm/tree/master/path�nder
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Figure 5: �ery 2 (Data-fetch) time vs LDBC dataset size.
90th percentiles are given based on 4 samples a�er cache
warm-up.

Figure 6: �ery 6 (Graph Traversal) time vs LDBC dataset
size. 90th percentiles are given, based on 4 samples a�er
cache warm-up.

since it can optimise the data-layout to reduce the amount of in-
termediate results sent over the network and improve the degree
of parallelism on the computation. Although the performance of
Neo4j seems slower on 3GB than 10GB, the di�erence is in the same
order of magnitude. �e same is true for 30GB and 100GB6.

Neo4j has the smallest query time on the Graph Traversal op-
erations (�ery 6) shown in Figure 6. Neo4j’s query planner uses
e�cient space pruning, reducing the problem down to a subset of
the graph and thus fetching less data. It also splits the query plan
into several parallel branches. SQLGraph, on the other hand, is not
optimised for graphs with many edge and node types. �e schema
requires searching for subtypes on a table during the traversal, and
the query planner is not aware of the graph structure underneath
it.

5 RELATEDWORK
Unipop [10] maps Gremlin queries on top of RDBMS and NoSQL
stores. �e project de�nes a model (ontology) for representing Prop-
erty Graph information and mapping it to SQL systems. Ontologies
provide similar expressivity to gTop models, and Tinkerpop com-
patible systems can map Gremlin commands to Unipop-enabled
components. �e similarity between both models show our pro-
posed query resolution contributions, such as Path�nder, could be
applied to Gremlin through the Unipop stack.

Stardog [11] provides similar graph topology mapping features
for RDF graphs. �emapping syntax can be used to convert RDBMS
6�e documentation for the full benchmarking process, along with the results for all
LDBC queries can be found at h�ps://github.com/Alnaimi-/database-benchmark

into a RDF representation, which is Stardog’s native format for all
vertices, edges and properties. Ga�er [8] provides a graph schema
to specify edge/vertex properties in a JSON format, with persistence
in an Accumulo store. Unlike gTop, the intermediate schema does
not support edge and node typing (e.g. specifying that nodes in
a given format are of type Person) or composed edges (with data
coming from multiple tables in order to represent a single edge).
Simpler approaches for mapping have also been employed. RapidG-
rapher [7] requests the user to manually enter SQL queries in order
to map nodes and edges in a RDBMS. GraphX [4] requires manual
mapping during ETL. [6] uses undirected graphs for their mapping.

Grail [2] de�nes a SQL schema which supports both storing
graphs and executing full graph processing through a vertex-centric
processing computation model, such as Pagerank, or Weakly Con-
nected Components. �e schema includes both permanent tables
for graph information and intermediate tables representing com-
putation state. Grail presents multiple optimisations that show the
potential of a traditional SQL backend to support graph storage
and analysis on a single node.

SQLGraph [12] proposes a relational schema which stores Grem-
lin Property Graph information in a relational structure designed
for executing queries e�ciently. Each Gremlin query pipe is trans-
lated to a SQL instruction, combining them all into a single SQL
database query. SQLGraph schemas can be adopted as a gTop imple-
mentation, although this would require the data to be modelled as a
Property Graph, rather than interpreting an existing SQL database
as a graph.

6 CONCLUSION
In this paper we address the challenges of running declarative
Property Graph queries on non-domain speci�c backends without
performing ETL operations. Our solution is split into three contri-
butions: (i) A mapping format, gTop, which enables the translation
from the Property Graph domain to alternative storage; (ii) a par-
allel RPQ solver which uses graph topology information whilst
searching for paths; and (iii) a module that translates OpenCypher
queries to SQL instructions.

Our evaluation con�rms that relational systems can still produce
comparable performance against domain-speci�c technologies, de-
pending heavily on the type of graph query. Furthermore, we show
that providing schema-like information (via a mapping such as
gTop) to a query planner can greatly in�uence system performance
for both the proposed use case, and even current state of the art
graph databases.

As a continuation to this work, we plan to investigate methods
for inferring graph topologies from existing relational and NoSQL
data stores, combining structural relational analysis and automated
data classi�cation techniques. �is way, Cytosm can enable the
use of property graph queries to explore the inherent relationships
from non graph datasets.
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