
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/325588274

GraphTides: A Framework for Evaluating Stream-based Graph Processing

Platforms

Conference Paper · June 2018

DOI: 10.1145/3210259.3210262

CITATIONS

3
READS

429

7 authors, including:

Some of the authors of this publication are also working on these related projects:

PRECIOSA View project

chronograph – A Distributed Platform for Event-sourced Graph Computing View project

Benjamin Erb

Ulm University

35 PUBLICATIONS 140 CITATIONS

SEE PROFILE

Dominik Meißner

Ulm University

9 PUBLICATIONS 24 CITATIONS

SEE PROFILE

Benjamin Steer

Queen Mary, University of London

8 PUBLICATIONS 20 CITATIONS

SEE PROFILE

All content following this page was uploaded by Benjamin Steer on 11 June 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/325588274_GraphTides_A_Framework_for_Evaluating_Stream-based_Graph_Processing_Platforms?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/325588274_GraphTides_A_Framework_for_Evaluating_Stream-based_Graph_Processing_Platforms?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/PRECIOSA?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/chronograph-A-Distributed-Platform-for-Event-sourced-Graph-Computing?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Erb?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Erb?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ulm_University?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Erb?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Meissner?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Meissner?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ulm_University?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dominik_Meissner?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Steer2?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Steer2?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Queen_Mary_University_of_London?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Steer2?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Benjamin_Steer2?enrichId=rgreq-578880ac8437934643b999a8a4bc4d2b-XXX&enrichSource=Y292ZXJQYWdlOzMyNTU4ODI3NDtBUzo2MzYzNjIyODE3MzgyNDJAMTUyODczMTk5OTQyMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

GraphTides: A Framework for Evaluating Stream-based Graph
Processing Platforms

Benjamin Erb
Dominik Meißner

Frank Kargl
[firstname].[lastname]@uni-ulm.de
Institute of Distributed Systems

Ulm University, Germany

Benjamin A. Steer
Felix Cuadrado

b.a.steer@qmul.ac.uk
felix.cuadrado@qmul.ac.uk

Queen Mary, University of London
London, United Kingdom

Domagoj Margan
Peter Pietzuch

d.margan15@imperial.ac.uk
prp@doc.ic.ac.uk

Imperial College London
London, United Kingdom

ABSTRACT
Stream-based graph systems continuously ingest graph-changing
events via an established input stream, performing the required
computation on the corresponding graph. While there are various
benchmarking and evaluation approaches for traditional, batch-
oriented graph processing systems, there are no common proce-
dures for evaluating stream-based graph systems. We, therefore,
present GraphTides, a generic framework which includes the def-
inition of an appropriate system model, an exploration of the pa-
rameter space, suitable workloads, and computations required for
evaluating such systems. Furthermore, we propose a methodology
and provide an architecture for running experimental evaluations.
With our framework, we hope to systematically support system
development, performance measurements, engineering, and com-
parisons of stream-based graph systems.

CCS CONCEPTS
• General and reference → Evaluation; Measurement; • In-
formation systems → Data streaming; • Theory of computa-
tion → Graph algorithms analysis;

KEYWORDS
graph processing; graph analytics; stream-based graphs; evolving
graphs; temporal graphs; evaluation; measurements

ACM Reference Format:
Benjamin Erb, Dominik Meißner, Benjamin A. Steer, Domagoj Margan,
Frank Kargl, Felix Cuadrado, and Peter Pietzuch. 2018. GraphTides: A
Framework for Evaluating Stream-based Graph Processing Platforms. In
GRADES-NDA’18 : 1st Joint International Workshop on Graph Data Manage-
ment Experiences & Systems (GRADES) and Network Data Analytics (NDA),
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3210259.3210262

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GRADES-NDA’18 , June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5695-4/18/06. . . $15.00
https://doi.org/10.1145/3210259.3210262

1 INTRODUCTION
Most existing graph processing platforms consider computations
on static graphs (e.g., Pregel [34], PowerGraph [18], GraphX [19]).
These platforms take an arbitrary, static graph as input, run a spec-
ified graph computation— in most cases in a batch-oriented fash-
ion— and eventually yield a resulting graph or other output. Dy-
namic graphs with mutating topologies have also been addressed
by some platforms (e.g., Chronos [22], GoFFish [44]). As most real-
world graphs such as social networks or web graphs change over
time, their dynamicity may be captured, often by periodically creat-
ing snapshots. Graph snapshots of different points in time are then
processed in batches to perform temporal graph computation. An
even smaller subset of systems address the challenge of dynamic
graph processing by using streams of changes (Kineograph [9],
GraphTau [27], Chronograph [15], GreyCat [23], KickStarter [45]).

Stream-based graph processing systems perform graph compu-
tations while simultaneously receiving a stream of graph updates.
As the actual graph is still evolving during runtime, these system
can apply a spectrum of different computation styles, ranging from
batch computations on internal snapshots to online computations.
While the former can provide more exact, but potentially stale re-
sults, the latter provides fast, but often approximate results. This
establishes a trade-off between correctness and latency.

Figure 1 shows an example of a stream-based graph system that is
fueled by update operations from a social network and that manages
an evolving graph model (as up-to-date as possible) while at the
same time performing approximative computations on the graph.
Approximation allows tasks such as identifying influential users
and trending content to complete within a timely manner. This is
important, as longer computations with a higher accuracy would
be based on a staler input when completed, or results would not be
available in time. Stream-based graph systems sit between batch
graph analytics systems and graph database stores. Their workload
is more interactive as with traditional graph analytics systems, and
their computations go beyond graph queries and traversals. On
the other hand, stream-based graph systems do not necessarily
provide any persistence or advanced query support, nor are their
computation results expected to always be accurate.

The popularity and relevance of traditional, batch-oriented graph
processing systems has led to numerous efforts to systematically
benchmark and evaluate such systems [2, 7, 21, 26, 39], as shown in
section 2. We argue that evaluation techniques are just as important
for stream-based graph processing systems. They (i) facilitate de-
sign and implementation decisions during development, (ii) provide

https://doi.org/10.1145/3210259.3210262
https://doi.org/10.1145/3210259.3210262

Application graph (original event source)

⟨ . . . , USER_CREATED(4),
FOLLOWED(3 4) ⟩

Stream-based Graph Processing System

Online Processing
Queries & Results

User

p1

p2

p3

p4

Figure 1: General model of stream-based graph processing systems. An event source provides a persistent stream of graph
update events. The system ingests the stream, maintains an internal graph representation, and executes graph computations.

reliable performance estimations, (iii) enable targeted performance
engineering steps, and (iv) allow for unbiased system comparisons.
The increasing relevance of near-realtime graph processing neces-
sitates a thorough exploration of its design spaces and evaluation
concepts, presented in section 3, which go beyond existing solutions
and consider perspectives from domains, such as event processing.

As a main contribution of this work, we introduce a generic
framework for evaluating stream-based graph processing systems
in section 4, complemented by a methodology and an architec-
ture for performing tests and measuring system performance. A
prototype implementation of this architecture is then used for the
experimental evaluation of two existing systems in section 5. Finally,
in section 6, we conclude our contributions and point to potential
future work.

2 BACKGROUND
Our approach relates to existing evaluation works carried out for
conventional graph-based and stream-based systems. We also sur-
vey existing works on system evaluation methodologies and point
out typical use cases for stream-based graph processing.

2.1 Evaluation of Graph-based Systems
Prior work for the evaluation of graph-based systems focused pri-
marily on the following: (i) traditional, batch-oriented graph pro-
cessing systems and (ii) graph database systems. We do not go
into details for benchmarks for specialized semantic graph systems
(e.g., Berlin SPARQL Benchmark [6], LUBM [20]), or graph systems
for high performance graph analytics (e.g., Graph 500 [12]), HPC
Scalable Graph Analysis Benchmark [5]) , as they do not fit into
our focus of general purpose, community-driven graph processing
systems for single machines and commodity clusters.

LDBC Graphalytics [26] is currently the only industrial-grade
benchmark designed and developed for the evaluation of graph
processing systems. It supplies out-of-the-box benchmark suites
for existing graph processing systems both from industry and the
open source community, but also supports the custom evaluation of
arbitrary graph processing platforms. Graphalytics offers a bench-
marking palette of six standard graph algorithms and a number of
synthetic and real datasets, provided in four different size classes.
When not relying on real data sets, graph benchmarks require
synthetic graphs. Graph generators are still an active field of re-
search [8, 41, 42]. However, not all generators provide results that
can be streamed. The most basic benchmark provided by Grapha-
lytics consists of measuring the baseline performance in terms of
total processing time and processed vertices/edges per second, all
of which are obtained by running a variety of experiments with
different datasets and algorithms. Different systems may then be

compared based on quantifying metrics for scalability, robustness,
and performance variability. Graphalytics provides an additional set
of tools as part of the suite. The LDBC SNB generator [16] creates
synthetic workloads based on a social network graph. Granula [39]
is a performance evaluation tool of Graphalytics used for additional
fine-grained, manual bottleneck analysis in graph processing sys-
tems. While Graphalytics represents an entire benchmarking suite
for batch-oriented graph analytics, our framework addresses the
evaluation of stream-based graph processing systems not covered
by Graphalytics. McSherry et al. [36] pointed the relevance of rigor-
ous evaluations of graph processing systems in terms of scalability
and performance properties.

Graph databases specialize in efficient storage, querying, and
manipulation of the entities and relationships which form a graph
structure. XGDBench [13], LinkBench [4], or the Graph Traversal
Benchmark [11] are examples for benchmarks with graph data-
base workloads that primarily target traversal-based queries. The
necessity of dedicated workloads that address real-time social net-
working has been discussed in [40]. Although the authors limit their
discussion on graph databases and relational stores, their general
approach shares some similarities with our evaluation framework
for stream-based graph processing.

2.2 Evaluation of Stream Processing Systems
While benchmark suites for graph analytics primarily focus on over-
all performance, scalability, and duration of computations, systems
for stream processing and event processing have slightly different
sets of metrics. As these systems often aim for near-realtime process-
ing and results with low latency, their behavior over time and under
varying load becomes more relevant. This is reflected in various
benchmarks for stream processing systems such as HiBench [24],
SparkBench [32], BigBench [17], and BigDataBench [46].

Prior to the existence of stream processing benchmarks, develop-
ers of stream processing systems had to perform their own experi-
ments to evaluate and compare the performance of their systems.
Initial attempts for evaluation and comparison of emerging stream
processing systems were foundwithin existing batch benchmarking
suites which extended their capabilities to support streaming sce-
narios. The earliest example of a stream management benchmark is
LinearRoad [3], which aimed at the evaluation of pioneering stream
data management systems such as Aurora [1] and STREAM [38].
StreamBench [33] is one of the first benchmarking suites exclusively
designed and developed with modern distributed stream processing
systems in mind (namely Spark and Storm). It offers seven different
streaming workload scenarios, performance metrics for different
data scales and the evaluation of fault tolerance capabilities. Recent
stream benchmarking efforts such as the Yahoo! benchmarking

suite [10] focus on measuring latency produced by popular stream
processing engines (e.g., Storm, Spark, and Flink) under a given
input load.

The usage of stream-based, replayed input and the focus on
runtime behavior under load is something that we adopt for our
evaluation approach for stream-based graph processing systems.

2.3 Evaluation Methodologies
Performance evaluations have a long history in the systems com-
munity for performance engineering of system components during
development, for analyses of full systems and for comparison be-
tween alternative solutions. Jain [28] has established a rigorous
performance evaluation methodology for computer systems. Firstly,
the system and its components have to be defined and the goals of
the analysis have to be stated. The function of the system and its
desired outcomes must then be listed. Next, the analyst must choose
appropriate metrics, including the type of metric (e.g., throughput,
response time) and the optimum value in the chosen dimensions
(e.g., HB: higher is better, LB: lower is better, NB: nominal is best).
Following this, a list of parameters affecting the performance of the
system must be drawn up— both system parameters and properties
of the actual workload. The analyst can then decide which param-
eters are to be varied for the experiment, and define appropriate
levels for those remaining. The evaluation can either be imple-
mented as a simulation, by providing an analytical model, or by
measuring a real system. The workload description characterizes
the service usage under test. For the experimental design, the ana-
lyst chooses a number of setups. This can range from variations of
a single parameter, to full factorial designs where all levels of all
factors are considered. In the case of benchmarks, different systems
are measured with the exact same setup. Finally, after analysis and
interpretation of the data, results can be presented.

Popper [29] represents a modern approach for conducting sys-
tems experiments which take into account automation and repro-
ducibility of experiments. The Popper pipeline defines a workflow
between source code management, packaging, input data manage-
ment, execution, data and metrics collection, analysis, and finally
publication of results. It also specifies a skeleton structure for ex-
periment repositories and a number of pre-defined scripts which
interact with the Popper command line tool. The Popper convention
can be implemented using best practices from software engineer-
ing and software operation (DevOps). For instance, solutions for
lightweight OS-level virtualization (e.g., Docker) can be used for
packaging an experiment. Published experiments which follow the
Popper convention are intended to be easily re-executable by others
because of this established procedure.

2.4 Use Cases
We illustrate three example use cases that represent typical appli-
cation areas of evolving graphs and stream-based graph systems.

Connections in a Social Network. A social network grows as more
users sign up and steadily connect with friends. A stream-based
graph system processes each change in the social graph and main-
tains a ranking value for each user indicating their influence. The
system also uses the changes to detect certain trends in the social
graphs, such as individuals that attract a lot of new friends within

a specified period or communities that slowly break apart due to
users leaving the network.

Distributed Denial-of-Service Attacks in Computer Networks. A
stream-based graph system supervises a set of servers in a computer
network, modeling traffic flow between the servers and remote
clients. The system receives streams of flow data from the ingress
router and software-defined network switcheswithin themonitored
network.While the traffic of individual attackersmay appear benign
to the servers, the full insight of all incoming streams allows the
stream-based graph system to identify anomalous temporal traffic
patterns in the network and to determine the attackers’ networks.
Malicious hosts and remote networks may then be blacklisted.

Blockchain Transactions. In a distributed ledger, new blocks rep-
resent micro-batches of transactions. Each transaction contains
the parties involved and the transaction amounts. A stream-based
graph processing system consumes the stream of transactions and
maintains a combined transaction/wallet graph. The system pro-
vides live statistics for the transaction network and specific wallets.
These include balances, average transaction values, and distribution
of holdings in the network over time.

3 TOWARDS THE EVALUATION OF
STREAM-BASED GRAPH SYSTEMS

Before introducing our framework, we discuss the implications of
evaluating stream based graph processing systems. We, therefore,
first describe a general model for the stream-based graph systems
we are taking into account. Next, we discuss the altered parameter
space due to the dynamicity of a stream-based perspective. Finally,
we list the general requirements for the evaluation framework.

3.1 System Model
In our model, stream-based graph processing platforms are com-
puting systems which receive a continuous, unbounded stream
of events from an external source via the network (see Figure 1).
The event source is a remote system acting as a proxy for an ac-
tual real-world graph. The graph is both stateful and mutable. The
source publishes changes from its graph as soon as they become
observable. Each event in the stream contains a single, localized
operation which describes a change within the graph topology (i.e.,
by adding or removing a vertex or edge) or an update to its state
(i.e., by updating the properties of a vertex or edge). Therefore, the
ordered stream SG,t , which contains the events s1 up to st , defines
a corresponding graph Gt = (V ,E) at time t :

SG,t = ⟨s1, s2, . . . st ⟩ ⇔ Gt = (V ,E)

Each event sn describes one of the following six operations: add/re-
move vertex/edge; update vertex/edge state. The sets of vertices V
and edges E and their corresponding states are thus defined by the
sequence of all previously executed graph operations. The graph
system processes each incoming event from the stream and updates
its own internal representation of the graph correspondingly.

A main goal of an online platform is to keep the internal graph
representation as up-to-date as possible; otherwise, this represen-
tation would reflect a stale version of the actual graph. Note, the
event source and the processing platform are not coupled and their

event rates might differ. The systems use the graph representation
to execute online graph computations, therefore, graph computa-
tions and graph mutations run concurrently. Computation results
can be queried by the user once available. Note that this approach
differs from graph stream algorithms [35] which directly compute
pre-defined metrics without maintaining a graph representation.

3.2 Parameter Space
Benchmarks for batch-oriented graph processing systems focus
primarily on performance metrics as a function of the input graph,
the selected graph algorithm, and of the system under test.

When considering graph processing with streams of graph up-
dates, the space of relevant parameters and metrics expands signifi-
cantly. This is particularly noticeable for online processing, when
timeliness and low latency become even more relevant. We now
discuss all parameters and argue which we restrict ab initio and to
what extent others can be varied.

Graph Types. In our model, graphs are directed and stateful. Both
vertices and edges possess a mutable state. We do not, however, con-
sider multigraphs or self loops. Vertices are identified by a unique
ID. Undirected graphs can be modeled by ignoring edge directions
and stateless graphs can be represented by ignoring state properties.
This model is sufficient enough to cover most domains of dynamic
and evolving graphs such as social networks, computer networks
or road traffic networks.

Graph Evolution Properties. Probably the most striking difference
between stream-based graphs and static input graphs is their dy-
namicity. A static graph possesses a number of structural graph
properties, including the number of vertices and edges, degree
distributions, or measures for distance, connectivity, and centrality.

The dynamic aspect of evolving graphs adds additional temporal
graph properties [31, 43, 47]. Not only can all previous structural
graph properties change over time, but the dynamicity is also re-
flected in the rate, locality and distribution of change events— both
for topology changes (i.e., churn rate of vertices and edges) and for
state updates of vertices and edges. Different streams can lead to dis-
tinct temporal workload patterns, e.g., highly concurrent topology
changes at various points in the graph compared to huge numbers
of state update operations on a single vertex.

By allowing different streams of change operations, the graph can
evolve arbitrarily. In fact, one challenge of creating such workloads
is the preservation of certain graph properties.

Streaming Properties. With regards to the stream of updates, or-
dering, reliability, and messaging semantics have to be considered.
We argue that strong guarantees by default are expected by many
online graph processing platforms. Altered event orders or the loss
of events may produce inconsistent graph topologies, as operations
might fail due to violated preconditions caused by lost preceding
events. The framework is expected to constantly run evaluations
based on an ordered and reliable stream of events which follow
exactly-once semantics. However, by appropriately altering the in-
put stream used for an evaluation run, the framework can determin-
istically replay streams which do not adhere to the aforementioned
guarantees. While it is straightforward to modify a reliable, ordered
stream into an unreliable, unordered stream (e.g., by dropping or

duplicating arbitrary events or by shuffling partial streams), the
opposite conversion is not trivial. This is why we require strong
semantics for the stream replay, but allow the analyst to inject faults
into the input stream a priori (i.e., reordering, duplicates, losses).

Another parameter of stream processing is the extent to which
systems can apply backpressure. Pull-based streaming APIs often
allow systems to throttle down the rate of events sent. Alterna-
tively, the flow control mechanism of TCP can be used to indicate
overload. Without backpressuring, the system has to provide its
ownmechanism to prevent losing events under load. Systems either
rely on internal mechanisms to handle bulk loads (e.g., scale up,
scale out), or they have to offload pending events to an external
component (e.g., a scalable, persistent message queue).

Concurrency & Parallelism. A single, ordered input stream emit-
ted by multiple event sources requires constant coordination be-
tween the sources to retain ordering. Coordination, in turn, reduces
the streaming performance and can only mitigate the occurrence of
violated guarantees, not remove them entirely. As a result, a stream
is only allowed to have a single event source in our model.

In order to enable parallelism and horizontal scaling of input
workload, we opt for concurrent streaming of disjunct streams by
different event sources; multiple independent graphs are provided
and changed concurrently. We argue that the resulting processing
load is similar to the load of a single graph with concurrent changes
for many computations.

3.3 Requirements
Our framework addresses four main features required for the eval-
uation of stream-based graph processing systems.

Platform-agnostic framework. To date, different platforms for
online graph processing have emerged with substantially differ-
ent concepts in terms of their programming model, processing
style, and streaming semantics. Hence, the suggested evaluation
framework requires a platform-agnostic design in order to support
current and future stream-based graph systems. This includes a
generic streaming interface supporting different modes of oper-
ation (i.e., push-based and pull-based), which can be adapted by
platform-specific connectors. Instead of specifying concrete algo-
rithm implementations, the framework should list computation
goals to be provided by the analyst for the system under test.

Openness & extensibility. As previously outlined, the parameter
space for stream-based graph processing exceeds the complexity of
existing batch-oriented approaches, hence, the framework should
be modular and easy to extend. In particular, new algorithms for
generating graph streams should be able to be added to reflect
different evolving graphs. Existing graph streams— synthetically
generated by an external tool or captured from real graphs— should
also be supported as input.

Representative and versatile workloads. Regarding data sets, pro-
cessing tasks, and metrics, we need to take into account stream-
specific workloads resembling computations typically executed on
evolving graphs. This includes the generation of fast, approxima-
tive results and corresponding metrics for assessing latency vs.
correctness trade-offs, but also continuous, iterative queries.

off
li
ne

on
li
ne

Graph
Stream

Generator

Graph
Stream
Replayer

System
under
Test

runtime
metrics
logger

runtime
metrics
logger

Runtime
Metrics
Logger

Log
Collector

graph stream
replay file

graph
events

metrics
results

marker events

Figure 2: Conceptual overview of the GraphTides frame-
work and test harness.

Structured evaluation process. A single test run with an arbitrary
workload does not represent a valid evaluation. Hence, the frame-
work should define specific steps on how to run evaluations. This
includes different evaluation goals (e.g., increasing the input stream
rate), relevant evaluation factors and performance metrics, and
basic considerations for analysis and interpretation of results.

4 THE EVALUATION FRAMEWORK
Our evaluation framework GraphTides comprises metrics, work-
loads, components of the evaluation architecture, and methodolog-
ical recommendations. An implementation of GraphTides is avail-
able under an open source license1. Figure 2 illustrates the general
design of the framework. The test harness induces a stream of
graph events onto the system under test. At the same time, the test
harness continuously gathers metrics and processing results from
the system.

In order to support the evaluation of different systems with
varying levels of internal access, we defined three evaluation levels.

Level 0 A system under test on this level is considered a black
box. The system provides an interface for ingesting the graph
stream and for accessing or querying computation results.

Level 1 Systems on level 1 extend level 0 in such a way that
they expose a native metrics interface. This additional source
of information can be used to collect platform-internal data at
runtime (e.g., current throughput, platform load), as provided
by the system.

Level 2 On this level, a system provides complete access to its
internals and the analyst is able to make modifications to its
source code. Specific measurement logic can be injected into
the system. This evaluation level aligns with the fine-grained
perspective of Granula [39].

Concrete evaluation steps depend on the maximum level sup-
ported by the system, but also on the the actual evaluation goal.
For instance, the comparison of two stream-based graph processing
systems in regard to their average load is possible on level 0. In-
depth performance engineering of a system’s internal scheduling
component requires an evaluation on level 2.
1https://graphtides.github.io

4.1 Framework Architecture
GraphTides consists of a graph stream generator for the creation
of graph streams, a test harness, and a component for collecting
results (see Figure 2). During a test run, the graph stream replayer
outputs a generated stream, feeding the system under test while
runtime metrics loggers gather continuous data from the system, its
processing results, and other sources. After a finished run, the log
collector aggregates the recorded data and yields a single result log.

The graph stream file contains a sequence of entries of the follow-
ing types: (i) graph-changing events, (ii) marker events for flagging
specific points in time in the stream, and (iii) events that control
the behavior of the replayer. The graph stream input is typically
split into two parts, divided by a marker and a pause event. The
first phase bootstraps the initial graph and warms up the system
under test, while the second represents the main evaluation phase.

In order to connect the test harness to the system under test, the
analyst either plugs a platform-specific connector into the graph
stream replayer component, or provides logic within the platform
to receive and terminate the inbound stream accordingly.

Although all components, including the system under test, could
be placed on the same machine, we recommend a distributed setup
that conforms with typical use cases: external event sources, net-
work-based streams, and remote access to processing results. Ex-
perimental setups can also be scaled by adding multiple replayer
instances (each providing separate streams), and multiple system
instances (in case the system under test supports distribution).

Measurements in our framework are timestamped, requiring
synchronized wall clocks for all components of the framework
whenever measurements from different machines are examined as
a whole (e.g., by using the Precision Time Protocol [25]).

4.2 Graph Stream Format
The graph stream is a plain comma-separated value file which
contains a single event per line: COMMAND, ENTITY_ID, PAYLOAD.
Graph-changing events add or remove a vertex/edge or update its
state. Vertices are identified by a unique ID and edges are identified
by concatenating the source and destination identifiers, separated
by a dash. States of vertices and edges are user-defined strings
(e.g., stringified JSON). Marker events are particularly important
for pointing to specific stream segments. In a later analysis, time-
specific metrics can be correlated with the marker event. Markers
can also signal that a certain input has (not) entered the system and
that a corresponding computation result should now be expected.
Control events can change the speed of the replayer at runtime by
defining a speed-up factor (1 represents the initially defined rate of
the replayer). This allows emulation of varying rates, and is helpful
for inducing short bursts and peaks. A second control event causes
the replayer to pause new events for a specified amount of time.

4.3 Metrics
For online processing systems, the behavior over time and under
different workloads is of particular interest. This is why we focus
on time-series values for most metrics, collected at runtime by a
set of logger instances.

For some metrics, we also consider aggregated values when
directly comparing different solutions. This includes metrics such

https://graphtides.github.io

as average event throughput (HB), 99th percentile or result latency
(LB), or median relative errors of approximation results (LB).

Level 0 Metrics. Without any insights into the system, the analyst
relies on agnostic profiling tools to periodically measure the graph
system processes (e.g., perf, pidstat for Linux-based systems)
and the underlying operation system (e.g., dstat, iostat, sar for
Linux-based systems). For each process, CPU load (LB), memory
usage (LB), network I/O (LB), and disk I/O (LB) have to be logged2.
Measuring these metrics on a per-machine level also facilitates the
identification of confounding background processes.

Level 1 & 2 Metrics. Additional internal metrics, either provided
by a monitoring API or by a system-internal hook, are useful for
identifying specific load patterns, choke points, and bottlenecks.
Among others, these metrics could include internal throughput
rates (HB) and communication latencies between workers (LB).

Streaming Metrics. The graph stream replayer or system client
library is instrumented to collect metrics on the actual ingress rate
(HB) and for correlating in-stream marker events with wall-clock
time stamps in later analyses.

Computation Metrics. Metrics for assessing computation results
depend on the actual computation. For most results, this is the
latency (LB) until the result is available, and then its accuracy (HB).
Latency describes the time it takes for an ingested input event to
be reflected in a computation result. Accuracy describes the extent
of discrepancy between the result provided by the platform and the
exact result. Exact results are part of the workload definition and
need to be prespecified (i.e., by reconstructing the target graph and
running a separate batch computation as reference). Correctness
is an alternative metric for assessing computations that yield a
dichotomous result (i.e., existence of a path at a certain time).

4.4 Workloads
A workload in our framework is defined by at least one graph
stream and any number of computations to be executed during
streaming.

4.4.1 Graph Stream Properties. A graph stream is defined as
a sequence of events to be replayed. It characterizes the load in-
duced on the platform in terms of graph dynamicity over time and
possesses the following properties:

Stream Composition Sequence of topology-changing events
and events which update the state of vertices and edges.
• Event mix: Ratio of topology changing events vs. state
changing events.

• Interleaving: Patterns of how both types alternate in the
stream.

Topology changes Growth/decay of the graph over time.
• Direction: Ratio of add vs. remove operations.
• Types: Ratio of vertex vs. edge modifications.
• Locality distribution: Positions of the vertices/edges to be
added/removed.

• Temporal distribution: Patterns of topology changes over
time.

2Optima depend on the characteristics of the system. For a CPU-bound system, in-
creased network load may be desirable if the overall performance increases.

State changes Updates of vertex and edge values.
• Types: Ratio of vertex vs. edge updates
• Locality distribution: Positions of the vertices/edges to be
updated.

• Temporal distribution: Temporal patterns of state updates.
• Update behavior : Workload-specific characteristics of how
states evolve.

Streaming rate The stream rate variability is defined by the
graph stream file which controls the streaming rate during
a replay.

4.4.2 Computations. Potential computations on stream-based
graphs depend on the programming model and the processing style
of the system, but they also differ in the semantics of their compu-
tations. Offline computations are executed on graph snapshots that
are reconstructed from the event stream (e.g., epoch snapshots in
Kineograph [9]). Online computations directly process incoming
graph stream events (e.g., live model of Chronograph [15]). Hybrid
approaches (e.g., pause/shift/resume in GraphTau [27]) combine
both approaches. Converging computations (e.g., online PageRank
variants, distributed routing algorithms) can be executed on evolv-
ing graphs. The accuracy of their results at any instant of time is
then shaped by the duration of the preceding computation, and the
extent of recent changes. Other algorithms always yield a definite
result (e.g., triangle count). In online computations on evolving
graphs, this result may be inaccurate once provided, as it is based
on a stale view of the graph. Note that this is still a valid output, as
it provides a useful estimation. The periodical execution of compu-
tations can also yield time-series data on relevant properties (e.g.,
diameter estimation).

The choice of computation depends on the evaluation goal and
the capabilities of the system. Table 1 depicts a sample overview of
potential computations for many workloads.

During an evaluation run, the test harness continuously queries
the platform for results or updates to previous results of the com-
putation. This is particularly relevant for online computations that
provide result approximations. Combined with the marker events in
the input stream, this allows for an estimation of the result accuracy
and timeliness of computations.

4.5 Evaluation Methodology
For the evaluation methodology, we suggest a combination of Jain’s
methodology [28] and the Popper conventions [29] for automa-
tion and reproducibility. Specific evaluations are first defined by
the goals ranging from rough performance tests to specific op-
timizations of a single platform component. Appropriate work-
loads and metrics are then derived from these goals. Performance
measurements consist of a gradual exploration of the experiment
factors/levels and the corresponding impact on the outcome vari-
ables. Experiments during system development are primary used
in iterative steps where the same workload is applied to a gradu-
ally modified system. The assessment of results is grounded on an
analysis of the combined log file of an experiment run. Tools for
the assessment include appropriate visualizations (e.g., time series
plots) and statistical time series analyses (e.g., cross-correlations).

For evaluative comparisons between multiple systems or inter-
nal component alternatives, we advise statistically rigorous testing.

Table 1: Example computations for stream-based graph sys-
tems.

Computation Examples

Graph statistics Global properties, degree distribution
Graph properties PageRank, cycle detection
Routing & traversals Bellman-Ford, Floyd-Warshall, breadth-

first search, spanning tree construction,
diameter estimation

Graph theory Vertex coloring, triangle count
Communities Weakly connected components, k-means,

community detection
Temporal analyses Trend analyses on graph properties, on-

line sampling

In particular, this requires at least n ≥ 30 test runs for each configu-
ration due to the central limit theory. Results can then be compared
using confidence intervals of the aggregated metrics (often CI95).
Non-overlapping confidence intervals of the results from two dif-
ferent systems are indeed significantly different under the given
interval. Although this approach requires more effort, it minimizes
the risks of wrong conclusions.

An important evaluation pattern that we have encountered dur-
ing our tests are watermark events for temporal correlations in the
result logs. Pre-defined marker events within the stream are emitted
to a logger and indicate that the preceding event has been streamed
into the system. This is particularly helpful when assessing the
time it takes until a change is either reflected in the internal graph,
or in the corresponding computation result.

5 EXPERIMENTAL EVALUATIONS
In order to evaluate our framework, we implementated and tested
its components, benchmarked the graph stream replayer, and briefly
applied the methodology to two existing stream-based graph sys-
tems. We followed the Popper conventions [29] for evaluations and
all steps were automated with a set of shell scripts. The systems
under tests were packaged as Docker containers. The distributed
evaluation setup was realized with Docker Swarm. The scripts are
part of the examples available in the GraphTides repository.

5.1 Implementation of GraphTides Prototype
The graph stream generator is implemented in TypeScript (a stati-
cally typed superset of JavaScript) using Node.js. Graph generation
rules can be specified by a set of user-defined functions (see List-
ing 1). The graph stream generation is conceptually divided in two
phases: (i) bootstrapping an initial graph, and (ii) continuously mod-
ifying the resulting graph. In practice, this split makes it easier to
use a well-known graph generation algorithm for the initial graph
(such as Barabási-Albert or Erdős-Rényi) and to provide a more
specific algorithm for the subsequent evolution phase. The gener-
ator works in a configurable number of rounds. In each round, a
user-defined function selects the event type of the round and an
appropriate target vertex/edge. A user-defined callback additionally
allows the modification of the state of the target vertex/edge. The
graph stream replayer is implemented in Java 9 and is specifically

designed for emitting a stream of events with a uniform, yet tun-
able event rate. Therefore, streaming is decoupled from reading the
stream graph file. We use a multi-threaded design to decouple both
tasks and to ensure high throughput. Emitting stream events is
handled by a dedicated thread that uses high precision timestamps
and busy-waiting for timeliness. For our evaluations, we used small
Python and Node.js scripts as runtime metrics loggers. These scripts
periodically executed a certain operation such as submitting a cer-
tain query, collecting a certain metric, or receiving a marker event.
Each logger appends a time stamp to any outcomes and writes them
into a local log. Once a test run is finished, the log collector script
gathers the remote log files of all logger instances and merges them
into a single, chronologically sorted result log file.

5.2 Evaluation of Graph Stream Replayer
The stream replayer represents the critical component for test per-
formance. Our implementation is able to achieve robust streaming
rates even with a single streamer instance, both for piped and TCP-
based connections (Figure 3a). For target throughput rates beyond
100k events per second, the actual throughput did stick roughly to
the targeted rate, but the measured range of rates increased notably.

5.3 Experimental Evaluations of Real Systems
We surveyed existing stream-based graph systems and selected two
recently published, research-based systems based on their avail-
ability—Weaver [14], a distributed graph store, and Chronograph
[15], a distributed graph processing systems which supports online
processing on evolving graphs. For the evaluations, we covered
different setups (Weaver : single instance; Chronograph: distributed
setup), workloads (Weaver : generated workload; Chronograph: con-
verted SNB workload), evaluation goals (Weaver : ingress scalability;
Chronograph: behavior under varying stream load), and evaluation
levels (Weaver : level 0; Chronograph: level 2).

5.3.1 Write-Throughput in Weaver. Although not a graph pro-
cessing system, we decided to run an experimental evaluation with
Weaver, as it is designed for evolving graph-structured data with
high throughput of updates [14]. Weaver provides horizontal scala-
bility and employs transactional semantics for updates.

We used Weaver as a Level 0 example and conducted an exper-
iment to assess Weaver’s capability of write-only workloads. We
configured the GraphTides replayer to forward the stream to a
client process local to the Weaver instance. We then measured the
actual write throughput with different target rates and transaction
batches (i.e., single transaction per event vs. 10 events batched as
1 transaction) against a single instance of Weaver. As shown in
Figure 3b, Weaver was only able to keep pace with lower streaming
rates, while it backthrottled faster rates. The evaluation of the CPU
utilization (Figure 3c) highlighted that the Weaver timestamper
process consumes more cycles than other Weaver processes. This
finding could represent an entry point for optimizations of Weaver.

5.3.2 Chronograph. As the Chronograph prototype provides
entry points to inject metrics collections, we selected it for an
experimental Level 2 evaluation. We instrumented it to capture
internal queue lengths and operation throughputs of the workers.
We also altered it to periodically dump intermediate processing

10k
20k
40k
80k

160k
320k

10k 20k 40k 80k 160k320k 10k 20k 40k 80k 160k320k

pipe tcp

th
ro

ug
hp

ut
 [e

ve
nt

s/
s]

target throughput [events/s]

(a) Median throughput of the Graph Stream Re-
player for given target rates (range covers 95%, in-
dicates 5th percentile to maximum).

 101

 102

 103

 104

 0 100 200 300 400 500th
ro

ug
hp

ut
 [e

ve
nt

s/
s]

time [s]

 102

 102

 103

 103

 104

 104

 1 evt/tx, streaming rate [evts/s]:

10 evts/tx, streaming rate [evts/s]:

(b) Events processed in Weaver using different
streaming rates and transaction batches. Indepen-
dent of the actual streaming rates, Weaver ap-
peared to have an upper bound for throughput.

 0

50

100

 0 100 200 300 400 500cp
u

ut
ili

za
tio

n
[%

]

time [s]

weaver-timestamper weaver-shard

(c) CPU usage of Weaver processes with 10,000
events/s badged as 10 events per transaction. The
evaluation showed a relatively high utilization of
the timestamper process of Weaver.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

re
p
la

y
 r

a
te

[e
v
e
n
ts

/s
] worker 1

worker 2
worker 3
worker 4

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

in
te

rn
a
l
o
p
s

[o
p
s/

s]
 0

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

cp
u
 u

ti
liz

a
ti

o
n

[%
]

 0
 10000
 20000
 30000
 40000
 50000
 60000

w
o
rk

e
r

q
u
e
u
e

le
n
g
th

 0
.25

.5
.75

1

 0 50 100 150 200 250 300re
la

ti
v
e
 r

a
n
k

e
rr

o
r

[%
]

time [s]

(d) Stacked time-series plot of a Chronograph experiment runwith a social networkwork-
load. During graph evolution, the system computes approximate rank values for all users.
Relative rank errors are estimated retrospectively. The visualization shows a long period
of computation after the stream has stopped due to a large backlog of queued messages.

Figure 3: Results from our evaluation of the GraphTides framework applied to existing stream-based graph systems.

results for the most influential users. We then used a variable load
which was converted from an LDBC SNB generator output. For
this test, we selected a single-phase stream with a short pause of 20
seconds and a subsequent period of doubled rate. The computation
executed an online rank algorithm on the evolving graph.

The experiment was executed on a setup with four workers
running on four separate machines. For the assessment of the re-
sults, we generated a stack time-series plot from the result log, as
shown in Figure 3d. The visualization contains data gathered from
all workers as well as the instrumented replayer component and
relative errors of the online computations of certain vertices. The vi-
sualization indicates that half of the worker’s internal queues were
saturated at the end of the stream and kept the system busy due to
the backlog of internal messages for online processing. The evalua-
tion results indicate the online algorithm in use does not align well
with the Chronograph programming model, as the graph evolution
and computational messages compete for internal communication
resources, yielding inaccurate results with high delays.

6 CONCLUSION
Both the analysis of dynamic and evolving graphs and the general
evaluation of graph processing systems continue to raise a number
of research questions within the community [30, 37]. In this pa-
per, we addressed the challenge of evaluating systems for evolving

graphs by introducing GraphTides, a generic evaluation framework
for stream-based graph processing systems. GraphTides tackles the
timeliness dimension, which is a relevant aspect for many systems
that perform stream-based graph analytics. Timeliness adds an en-
tirely new dimension to the performance behavior and can account
for changes in performance, scalability, and robustness.

GraphTides covers the full evaluation cycle fromworkload gener-
ation to result analysis and provides the analyst with a set of frame-
work components to design their own experiments for a stream-
based graph system. The framework supports developers of stream-
based graph systems, allowing for in-depth performance measure-
ments/engineering, and comparisons of stream-based graph sys-
tems. GraphTides might also help during the development of algo-
rithms for online graph computations on evolving graphs. Rigorous
measurements support decision-making on latency vs. accuracy/-
correctness trade-offs for approximations.

Our long-term goal is to develop GraphTides into a benchmark
suite— similar to LDBC Graphalytics, but for stream-based analyt-
ics. The suite needs to be generic enough to cover different comput-
ing styles on graph streams, and at the same time concrete enough
for actual system comparisons. This requires future discussions
within the community on standardized and representative sets of
graph streams and computations as benchmarking workloads.

REFERENCES
[1] Daniel J. Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Con-

vey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003.
Aurora: a new model and architecture for data stream management. the VLDB
Journal 12, 2 (2003), 120–139.

[2] Khaled Ammar and M Tamer Özsu. 2013. WGB: towards a universal graph
benchmark. In Workshop on Big Data Benchmarks. Springer, 58–72.

[3] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear road: a
stream data management benchmark. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. VLDB Endowment, 480–491.

[4] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark
Callaghan. 2013. LinkBench: A Database Benchmark Based on the Facebook
Social Graph. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’13). ACM, New York, NY, USA, 1185–1196.
https://doi.org/10.1145/2463676.2465296

[5] David A. Bader, John Feo, John Gilbert, Jeremy Kepner, David Koester, Eugene
Loh, Kamesh Madduri, Bill Mann, Theresa Meuse, and Eric Robinson. 2009. HPC
Scalable Graph Analysis Benchmark. (2009).

[6] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark.
International Journal on Semantic Web and Information Systems (IJSWIS) 5, 2
(2009), 1–24.

[7] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Erling,
and Peter Boncz. 2015. Graphalytics: A big data benchmark for graph-processing
platforms. In Proceedings of the GRADES’15. ACM, 7.

[8] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[9] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,
Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: Taking
the Pulse of a Fast-changing and Connected World. In Proceedings of the 7th ACM
European Conference on Computer Systems (EuroSys ’12). ACM, New York, NY,
USA, 85–98. https://doi.org/10.1145/2168836.2168846

[10] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, et al. 2016. Benchmarking streaming computation engines: storm, flink and
spark streaming. In Parallel and Distributed Processing Symposium Workshops,
2016 IEEE International. IEEE, 1789–1792.

[11] Marek Ciglan, Alex Averbuch, and LadialavHluchy. 2012. Benchmarking traversal
operations over graph databases. In Data Engineering Workshops (ICDEW), 2012
IEEE 28th International Conference on. IEEE, 186–189.

[12] Graph 500 Steering Committee. 2017. Graph 500 Benchmarks v2.0. https://
graph500.org/. (June 2017).

[13] Miyuru Dayarathna and Toyotaro Suzumura. 2012. XGDBench: A benchmarking
platform for graph stores in exascale clouds. In Cloud Computing Technology and
Science (CloudCom), 2012 IEEE 4th International Conference on. IEEE, 363–370.

[14] Ayush Dubey, Greg D Hill, Robert Escriva, and Emin Gün Sirer. 2016. Weaver: a
high-performance, transactional graph database based on refinable timestamps.
Proceedings of the VLDB Endowment 9, 11 (2016), 852–863.

[15] Benjamin Erb, Dominik Meissner, Jakob Pietron, and Frank Kargl. 2017. Chrono-
graph: A Distributed Processing Platform for Online and Batch Computations on
Event-sourced Graphs. In Proceedings of the 11th ACM International Conference
on Distributed and Event-based Systems (DEBS ’17). ACM, New York, NY, USA,
78–87. https://doi.org/10.1145/3093742.3093913

[16] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,
Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Network
Benchmark: Interactive Workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15). ACM, New York,
NY, USA, 619–630. https://doi.org/10.1145/2723372.2742786

[17] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain
Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: towards an industry stan-
dard benchmark for big data analytics. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. ACM, 1197–1208.

[18] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Presented as part of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12). USENIX, Hollywood, CA, 17–30.

[19] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Distributed
Dataflow Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI’14). USENIX Association, Berkeley,
CA, USA, 599–613.

[20] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. Web Semantics: Science, Services and Agents on
the World Wide Web 3, 2-3 (2005), 158–182.

[21] Yong Guo, Ana Lucia Varbanescu, Alexandru Iosup, Claudio Martella, and
Theodore L Willke. 2014. Benchmarking graph-processing platforms: a vision.

In Proceedings of the 5th ACM/SPEC international conference on Performance engi-
neering. ACM, 289–292.

[22] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vi-
jayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A Graph
Engine for Temporal Graph Analysis. In Proceedings of the Ninth European Con-
ference on Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article 1,
14 pages. https://doi.org/10.1145/2592798.2592799

[23] Thomas Hartmann, Francois Fouquet, Matthieu Jimenez, Romain Rouvoy, and
Yves Le Traon. 2017. Analyzing Complex Data in Motion at Scale with Temporal
Graphs. In The 29th International Conference on Software Engineering & Knowledge
Engineering (SEKE’17). KSI Research, 6.

[24] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 41–51.

[25] IEEE. 2008. IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002) (July 2008), 1–300. https://doi.org/10.1109/IEEESTD.2008.
4579760

[26] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, et al. 2016. Ldbc graphalytics: A benchmark for large-scale
graph analysis on parallel and distributed platforms. Proceedings of the VLDB
Endowment 9, 13 (2016), 1317–1328.

[27] Anand Padmanabha Iyer, Li Erran Li, Tathagata Das, and Ion Stoica. 2016. Time-
evolving graph processing at scale. In Proc. of the 4th International Workshop on
Graph Data Management Experiences and Systems. ACM, 5.

[28] Raj Jain. 1991. The Art of Computer Systems Performance Analysis - Techniques
for Experimental Design, Measurement, Simulation, and Modeling. Wiley.

[29] Ivo Jimenez, Michael Sevilla, Noah Watkins, Carlos Maltzahn, Jay Lofstead,
Kathryn Mohror, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2017.
The popper convention: Making reproducible systems evaluation practical. In
Parallel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE
International. IEEE, 1561–1570.

[30] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. 2017.
Management and Analysis of Big Graph Data: Current Systems and Open Chal-
lenges. In Handbook of Big Data Technologies. Springer, 457–505.

[31] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over
Time: Densification Laws, Shrinking Diameters and Possible Explanations. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining (KDD ’05). ACM, New York, NY, USA, 177–187.
https://doi.org/10.1145/1081870.1081893

[32] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. 2015. Spark-
bench: a comprehensive benchmarking suite for inmemory data analytic platform
spark. In Proceedings of the 12th ACM International Conference on Computing
Frontiers. ACM, 53.

[33] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. 2014. Stream bench: Towards
benchmarking modern distributed stream computing frameworks. In Utility and
Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on. IEEE,
69–78.

[34] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’10). ACM, New York, NY, USA,
135–146. https://doi.org/10.1145/1807167.1807184

[35] Andrew McGregor. 2014. Graph Stream Algorithms: A Survey. SIGMOD Rec. 43,
1 (May 2014), 9–20. https://doi.org/10.1145/2627692.2627694

[36] Frank McSherry, Michael Isard, and Derek G. Murray. 2015. Scalability! But
at what COST?. In 15th Workshop on Hot Topics in Operating Systems. USENIX
Association, Kartause Ittingen, Switzerland.

[37] Othon Michail and Paul G. Spirakis. 2018. Elements of the Theory of Dynamic
Networks. Commun. ACM 61, 2 (Jan. 2018), 72–72. https://doi.org/10.1145/
3156693

[38] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
2003. Query Processing, Resource Management, and Approximation in a Data
Stream Management System–. In IN CIDR. Citeseer.

[39] Wing Lung Ngai, Tim Hegeman, Stijn Heldens, and Alexandru Iosup. 2017. Gran-
ula: Toward Fine-grained Performance Analysis of Large-scale Graph Processing
Platforms. In Proceedings of the Fifth International Workshop on Graph Data-
management Experiences & Systems (GRADES’17). ACM, New York, NY, USA,
Article 8, 6 pages. https://doi.org/10.1145/3078447.3078455

[40] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. 2017. Do We Need
Specialized Graph Databases?: Benchmarking Real-Time Social Networking Ap-
plications. In Proceedings of the Fifth International Workshop on Graph Data-
management Experiences & Systems (GRADES’17). ACM, New York, NY, USA,
Article 12, 7 pages. https://doi.org/10.1145/3078447.3078459

https://doi.org/10.1145/2463676.2465296
https://doi.org/10.1145/2168836.2168846
https://graph500.org/
https://graph500.org/
https://doi.org/10.1145/3093742.3093913
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1145/3156693
https://doi.org/10.1145/3156693
https://doi.org/10.1145/3078447.3078455
https://doi.org/10.1145/3078447.3078459

[41] Himchan Park and Min-Soo Kim. 2017. TrillionG: A Trillion-scale Synthetic
Graph Generator Using a Recursive Vector Model. In Proceedings of the 2017 ACM
International Conference on Management of Data (SIGMOD ’17). ACM, New York,
NY, USA, 913–928. https://doi.org/10.1145/3035918.3064014

[42] Arnau Prat-Pérez, Joan Guisado-Gámez, Xavier Fernández Salas, Petr Koupy,
Siegfried Depner, and Davide Basilio Bartolini. 2017. Towards a Property Graph
Generator for Benchmarking. In Proceedings of the Fifth International Workshop
on Graph Data-management Experiences & Systems (GRADES’17). ACM, New
York, NY, USA, Article 6, 6 pages. https://doi.org/10.1145/3078447.3078453

[43] Jari Saramäki and Esteban Moro. 2015. From seconds to months: an overview of
multi-scale dynamics of mobile telephone calls. The European Physical Journal B
88, 6 (24 Jun 2015), 164. https://doi.org/10.1140/epjb/e2015-60106-6

[44] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Nagarkar,
Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. 2014. GoFFish: A Sub-
graph Centric Framework for Large-Scale Graph Analytics. In Euro-Par 2014
Parallel Processing, Fernando Silva, Inês Dutra, and Vítor Santos Costa (Eds.).
Lecture Notes in Computer Science, Vol. 8632. Springer International Publishing,
451–462. https://doi.org/10.1007/978-3-319-09873-9_38

[45] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. KickStarter: Fast and Accurate
Computations on Streaming Graphs via Trimmed Approximations. SIGARCH
Comput. Archit. News 45, 1 (April 2017), 237–251. https://doi.org/10.1145/3093337.
3037748

[46] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al. 2014. Bigdatabench: A
big data benchmark suite from internet services. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE, 488–499.

[47] Christo Wilson, Alessandra Sala, Krishna P. N. Puttaswamy, and Ben Y. Zhao.
2012. Beyond Social Graphs: User Interactions in Online Social Networks and
Their Implications. ACM Trans. Web 6, 4, Article 17 (Nov. 2012), 31 pages. https:
//doi.org/10.1145/2382616.2382620

A ADDITIONAL MATERIAL
A.1 Graph Stream Generator Interface

Listing 1: User API of the Graph Stream Generator

bootstrapGlobalContext :: (): object

bootstrapGraph :: (graph: Graph , globalContext: object): void

nextEventType :: (globalContext: object): EventType

vertexSelect :: (eventType: EventType , globalContext: object):

number

edgeSelect :: (eventType: EventType , globalContext: object):

[number , number]

insertVertex :: (vertex: Vertex , globalContext: object): object

insertEdge :: (edge: Edge , globalContext: object): object

updateVertex :: (vertex: Vertex , globalContext: object): object

updateEdge :: (edge: Edge , globalContext: object): object

removeVertex :: (vertex: Vertex , globalContext: object): boolean

removeEdge :: (edge: Edge , globalContext: object): boolean

constraint :: (event: Event , globalContext: object): boolean

A.2 Description of the Experimental
Evaluation Setups

Table 2: Configuration for Graph Stream Replayer test runs.

Configurations

Setup single instance (local only)
Machine Intel Core i7-7700 (quad-core; 3.60 GHz),

32 GB of memory
Workload generated social network workload
Targets Pipe: STDOUT (stream replayer) to STDIN

(measurement process)
TCP: local socket to measurement process

Table 3: Configuration for the Weaver experiments.

Configurations

Setup two machines (1× replayer, 1× Weaver in-
stance + local connector in Python using
Weaver client API)

Machines Intel Xeon E31220 CPU (quad-core; 3.10
GHz), 16 GB of memory, and 1 GigE NIC

Bootstrap Graph BarabasiAlbert (n = 10000;m0 = 250;M =
50)

Event Mix CREATE_VERTEX: 10%
REMOVE_VERTEX: 5%
UPDATE_VERTEX: 35%
CREATE_EDGE: 35%
REMOVE_EDGE: 15%
UPDATE_EDGE: 0%

Vertex Selection
Functions

removing vertices: Zipf (based on degree;
bias towards less connected vertices); updat-
ing vertices: uniform-random

Edge Selection
Functions

source: uniform-random; target: Zipf (based
on degree, bias towards strongly connected
vertices)

Table 4: Configuration for the Chronograph experiments.

Configurations

Setup four machines (4× Chronograph shard
workers; Kafka broker and stream replayer)

Machines Intel Xeon E31220 CPU (quad-core; 3.10
GHz), 16 GB of memory, and 1 GigE NIC

Workload converted LDBC SNB workload (only per-
sons and connections); 190,518 events
online influence rank computation

Stream Base streaming rate: 2000 events/s, pause
(20 sec) after 100,000 events, doubled rate
between the 100,001th and 150,000th event

View publication statsView publication stats

https://doi.org/10.1145/3035918.3064014
https://doi.org/10.1145/3078447.3078453
https://doi.org/10.1140/epjb/e2015-60106-6
https://doi.org/10.1007/978-3-319-09873-9_38
https://doi.org/10.1145/3093337.3037748
https://doi.org/10.1145/3093337.3037748
https://doi.org/10.1145/2382616.2382620
https://doi.org/10.1145/2382616.2382620
https://www.researchgate.net/publication/325588274

	Abstract
	1 Introduction
	2 Background
	2.1 Evaluation of Graph-based Systems
	2.2 Evaluation of Stream Processing Systems
	2.3 Evaluation Methodologies
	2.4 Use Cases

	3 Towards the Evaluation of Stream-based Graph Systems
	3.1 System Model
	3.2 Parameter Space
	3.3 Requirements

	4 The Evaluation Framework
	4.1 Framework Architecture
	4.2 Graph Stream Format
	4.3 Metrics
	4.4 Workloads
	4.5 Evaluation Methodology

	5 Experimental Evaluations
	5.1 Implementation of GraphTides Prototype
	5.2 Evaluation of Graph Stream Replayer
	5.3 Experimental Evaluations of Real Systems

	6 Conclusion
	References
	A Additional Material
	A.1 Graph Stream Generator Interface
	A.2 Description of the Experimental Evaluation Setups

