
A Model-Based Monitoring Architecture for

Heterogeneous Enterprise Services and Information

Systems

Félix Cuadrado, Rodrigo García-Carmona, Juan C. Dueñas, Álvaro Navas

 ABSTRACT Runtime management of distributed information systems is a complex and costly activity. One

of the main challenges that must be addressed is obtaining a complete and updated view of all the managed runtime

resources. This article presents a monitoring architecture for heterogeneous and distributed information systems.

It is composed of two elements: an information model and an agent infrastructure. The model negates the

complexity and variability of these systems and enables the abstraction over non-relevant details. The

infrastructure uses this information model to monitor and manage the modeled environment, performing and

detecting changes in execution time. The agents infrastructure is further detailed and its components and the

relationships between them are explained. Moreover, the proposal is validated through a set of agents that

instrument the JEE Glassfish application server, paying special attention to support distributed configuration

scenarios.

KEYWORDS Service-Oriented Architectures, Heterogeneous Systems, Distributed Systems,

Information Systems, Model-Driven Engineering.

1. INTRODUCTION

The actual economic climate and globalization have forced companies to face an ever increasing

competition. This situation forces them to develop new products in an agile way and quickly satisfy the

demands of its consumers. The most usual way to reach these targets is by adopting the service oriented

paradigm, which promotes the division of work in small components that work at unison. To enable this, a

robust support infrastructure is mandatory.

Concerning enterprise applications, quality of service is one of the most important factors that need to be

taken into account. Quality of service is built upon small response times and a high availability, and these

non-functional requirements are partially covered by the execution infrastructure. This infrastructure is

composed of several heterogeneous servers with specific roles, distributed over the network and grouped in

clusters. However, this kind of system greatly complicates the management processes [12], such as status

diagnosis, change evaluations or execution of operations intended to improve performance.

These tasks are usually executed by a manual operator. But this has a huge cost and does not provide the

agility needed for the processes. This way, to reach the theoretical advantages of a service oriented

architecture, a higher grade of automation in management operations is needed. But this is not an easy task,

since the composition of the management environment tends to be unknown during design phase (amount of

elements and system types, such as databases, application servers or business rules). This fact adds a huge

amount of complexity to the management process.

The solution to this problem lies in the adoption of a model-based abstraction layer. This layer would

allow the definition of management operations and environment elements in execution time. With it, the

resulting system can be more easily tailored to the specific environment details.

To enable this, a set of intermediation agents that hide the complexities of the environment to the

management system have to be developed. These agents must both translate the details of the environment to

the abstract model and the generic operations to commands specific to the interface of each element.

In this paper we present an information model and an architecture which together fulfill the need to obtain

the execution time information of a complex information system, and perform deployment and configuration

changes over it. The proposed solution automatically adapts to the specific characteristics of each

environment, combining an extensible architecture with model abstractions to represent the environment state

and the management operations. The solution has been designed keeping in mind the specific requirements of

enterprise banking systems. This work has been developed under the CENIT ITECBAN project, which aims

to create a complete core banking solution that leverages the recent paradigms of model-driven engineering

and service oriented architecture.

The article is structured as follows: In the next section we summarize the most relevant initiatives from

both the industry and academia concerning the deployment and configuration change execution over

distributed environments. In the third section we explain why none of the solutions introduced in the state of

the art fulfill all the requirements. We also detail our information model here. Following this, in the next

section we describe the most relevant aspects of the proposed architecture, explaining each component in

detail. In the fifth section we validate our approach using some of the agents developed: the ones designed to

work with the open source Glassfish application server. Lastly, we finish this article with the conclusions we

extract from our work. At the same time we propose several research topics that we think our work could lead

to in the future.

2. STATE OF THE ART

2.1 Management Service Information Models

Model-Driven Engineering (MDE) is a methodology based on abstracting real elements as models.

Models only contain the relevant information from the application domain, hiding the underlying complexity

derived from unneeded characteristics. Metamodels govern the semantics, characteristics and restrictions of

models, avoiding potential ambiguity. These characteristics are well known in the domain of network and

distributed management, where management information models are the prime mechanism for capturing a

complete representation of the managed system. Consequently, there are several standardization initiatives for

representing the relevant management information. We briefly present the most important initiatives here.

CIM (Common Information Model) [8] is an information model that describes the information of an

enterprise distributed system. The standard is maintained by an enterprise consortium, the DMTF (Distributed

Management Task Force). CIM provides an object-oriented model for representing the managed elements.

The specification extensively uses inheritance mechanisms to provide a modular and extensible

characterization of them. The modular structure of CIM is composed by a common core that defines the basic

elements, and a set of extensions. Each extension provides additional details over an aspect of the system

(e.g., databases, application servers, policy definition or hardware devices). Extensions can either extend the

base model, or further refine the concepts presented by other extensions. On the one hand, this approach

provides a rich characterization of every managed element, with a specific class governing its attributes and

management operations. On the other hand, the standard is so extensive that supporting tools only implement

specific subsets of the implementation, and the required modeling effort for covering additional elements

complicates its adoption to very heterogeneous systems.

The Object Management Group (OMG) also defines a distributed managed information model: the D&C

(Deployment & Configuration of Component-based Distributed Applications) specification [10]. This

standard also uses object orientation to model the managed elements, but follows a different approach.

Instead of attempting to define a class for each different managed element, D&C opts for a simple and

flexible approach. Every managed element is a resource, modeling an entity with an identifying name,

classified into one or more types. Resources model every element, ranging from physical artifacts, computing

nodes, network routers, as well as the software applications and services running on top of them. The

management information of each resource is provided through a set of properties (name-value pairs). The

combination of the type mechanism and characterization through properties allows management systems to

operate heterogeneous elements using the same abstractions. This approach is better suited for those types of

environments, but the specification is still limited in some aspects. D&C lacks support for representing

software and services, as key elements such as deployable units, version management, dependencies or

bindings among logical components cannot be represented with those concepts.

Finally, we present the MUWS (Management Using Web Services) specification promoted by OASIS [2].

This specification provides an information model and management protocol to manage distributed resources

using Web Services. Managed elements are modeled also as resources. Resources offer a set of management

capabilities that can be invoked by the management infrastructure. Basic capabilities include description

(providing resource name and version), state, metrics reporting or configuration (using a property name-value

system). This mechanism is designed with extensibility in mind, so that additional capabilities can be

developed for specific resources. In its simplicity, this approach is similar to the one followed by D&C, but it

provides a fundamental concept for successfully managing software elements in a rapidly evolving world: the

concept of resource versioning.

The three analyzed information modeling standards share a common foundation, which is an object-

oriented approach, and the concept of resources as the base management elements. However, no specification

can be directly applied to automate distributed heterogeneous service management. CIM approach is too

restrictive for heterogeneous systems, as the effort to model each different element greatly complicates the

development of autonomous elements. The generic approach of the other two initiatives is better suited for

that specific requirement. D&C provides the key concept of types, but the standard lacks adequate support for

characterizing the software elements. Finally, MUWS is the most basic of the three specifications, as it only

presents the base resource concept, and leaves additional characterization for capability extensions.

2.2 Heterogeneous Systems Management

Traditional system management processes are governed by a human operator that interacts with the system

through an administration console. However, the ever growing complexity of the managed systems, the

degree of heterogeneity, and the distributed nature of these elements greatly complicate its application. There

is a clear need for tools and frameworks that can (at least partially) automate these management tasks. Instead

of simply presenting all the gathered information, tools must aggregate all the management data, filter out the

non-relevant aspects, evaluate the current state, decide if any corrective action is required and finally invoke

its execution. This idea of self-managed systems has been promoted since 2003 under the autonomous

computing paradigm [7]. The cost of operation of a self-managed system is considerably reduced, as it

automatically carries out management activities without the need of human intervention. Each autonomic

manager can operate independently or coordinate with other agents, as well as work under the supervision of

human administrators. This way, this paradigm presents a general high-level goal, instead of an approach that

is completely incompatible with existing processes and infrastructure.

PBM (Policy-Based Management) [11] proposes to implement management automation through the use of

policies. A policy formalizes a guideline or criteria that must be met by the managed systems. Policies are

usually represented as rules, allowing management systems to automatically reason about the collected

management information, and invoke operations to correct how the managed system works. Policies are a

useful tool for implementing autonomic behavior.

There are several examples in the literature on how an autonomic manager can be implemented using

policies. The PMAC (Policy Management for Autonomic Computing) platform [9] combines policies

expressed in the ACEL language in order to provide an autonomic network manager. Focale [1] adopts a

similar approach, implementing an autonomic network manager through the use of ontologies. However, none

of them addresses the problem of automating the management of an enterprise, distributed heterogeneous

information system. Nonetheless, these approaches can also be applied to this domain. The only requirement

for the adoption of policies or similar mechanisms to automate management is the existence of an information

model that captures with sufficient detail the relevant information about the runtime state, operation

constraints, and potential operations. The following section presents our proposed information model.

3. RESOURCE INFORMATION MODEL

We have defined an information model that builds on top of the common ground of the analyzed

standards, and at the same time provides the required concepts and capabilities for automated management.

The model abstracts both the physical (or virtualized) runtime infrastructure and the software applications and

services that execute on top of it. Figure 1 shows the main elements of the runtime part.

Resources are the main model elements; they represent every manageable element of the system.

Resources are characterized by name, version and a set of properties. Additionally, every resource belongs to

a type, which intrinsically classifies similar elements. This way, it is possible to define restrictions that can be

matched by any element belonging to a type, simplifying the definition of automated policies and algorithms.

Automated reasoning is achieved as the model definition is complemented with a type taxonomy that provides

agreed types for the main elements in banking services and information systems (ranging from hardware

elements to software middle ware and services).

Resource

RuntimeUnit

unitResources

Container

Node

Resource

containerResources

Properties

Properties

Properties

properties
Resource

Properties

nodeResources

Environment

Resource

Properties

globalResources

Fig. 1: Runtime System Model

The runtime metamodel is composed by a set of resource subclasses that characterize the main elements

that constitute the management system. The subclasses constitute a hierarchy that mirrors the topology of the

environment. The root element is the Environment, whose main elements are identical to the D&C

Deployment Target element. The Environment contains system-wide Resources (e.g. a DNS server), as well

as the physical runtime topology, through a list of Interconnect and Bridge elements. Finally, an Environment

aggregates the runtime computing resources as a set of Node elements. Nodes are Resource subclasses that

comprise the hardware, firmware and operating system of managed elements, with specific capabilities such

as memory, RAM, or available TCP ports modeled as Node Resources. Nodes also host a set of Containers,

which represent the application servers, DBMS (Database Management Systems), and BRMS (Business Rule

Management Systems) that host the software artifacts that provide the specific functionality. In contrast to

D&C they are specifically modeled as they play a fundamental part in services deployment and configuration.

Containers host the Runtime Units, which represent the software artifacts that are deployed over the

environment. Units provide at execution time services, libraries and functional components that are also

modeled as resources (with the type identifying its specific characteristics).

The software metamodel describes the software elements before they are deployed at the runtime

environment. The model characterizes the Deployment Units, and provides information for their automated

management such as the logical dependencies with other components, or the runtime restrictions for their

correct execution (e.g. demanding a minimum amount of RAM, or the exclusive access to a specific TCP

port). Both models share the common concepts of Resource and Unit. This way the restrictions defined by the

software model can be automatically checked at the runtime model.

4. MANAGEMENT AGENT ARCHITECTURE

The modeling abstractions presented at the previous section capture all the relevant information for

managing a heterogeneous distributed infrastructure. However, they must be supported by an instrumentation

infrastructure. Instrumentation is performed by a set of agents that mediate between the management system

and the managed elements. These agents must perform two vital functions. First, they must be able to retrieve

the information about the current state of the managed elements, and represents it with the presented model

abstractions. Additionally, agents must be able to apply deployment and configuration operations to the

runtime environment, by an invocation of the different management interfaces.

The runtime infrastructure is an evolving ecosystem, with continuously changing software and hardware.

Additionally, there is a great degree of diversity between the topology and selected technologies for the

different solutions that are adopted by different organizations and departments. Because of those factors, the

agents infrastructure should support an additional requirement: it must detect changes in the infrastructure,

automatically aggregate the information from new elements and alert about missing parts.

We have fulfilled these requirements in by adopting a layered design. Figure 2 shows the main elements of

the instrumentation architecture. Agents operate at different abstraction levels so that they can automatically

aggregate the management information and can seamlessly communicate with the specific managed elements.

We now present the main elements of the architecture.

Context Gatherer: These components monitor a runtime node or container; they collect information about

its current state and changes by connecting to the specific management APIs and convert the retrieved data to

resources from the model. Examples of the types of information that is retrieved by these components include

operating system details (name, version, libraries), hardware resources (processor, available memory,

devices) or container configuration (http port, deployed units). Each physical runtime element is instrumented

by a specific Context Gatherer, whose information is integrated through the Adaptor design pattern.

Actuator: Invokes deployment and configuration activities at the runtime containers. Example operations

include configuring a container or installing a deployment unit. Each Actuator is registered to operate specific

types of containers, which allows automatic matching between generic change orders and specific execution.

Environment Node

Environment

Manager
Node Manager

Discovery Service

Context

Gatherer

Actuator

Container

1…*

1…*

1…*

1…*1…*

Monitors Operates

Agent Infrastructure

Fig. 2 Agents Instrumentation Infrastructure

Node Manager: Manages the available information and invoked changes at a runtime node. This

component aggregates both Context Gatherers and Actuators registered to one node. Node Managers are not

specific to each managed node, they abstract from the specific details. For monitoring purposes, they

aggregate the information collected by the specific Context Gatherers, already converted to the model.

Environment Manager: This component is the root of the agents infrastructure, coordinating all the

management activities that take place at the runtime environment. The Environment Manager controls the

deployed Node Managers, constructing a complete model of the runtime state and coordinating the execution

of change plans. Communications between these agents is performed through an asynchronous event

mechanism, in order to reduce network load of the instrumentation layer.

Discovery Service: The Environment Manager must be aware of all the existing Node Manager agents.

The designed architecture allows either manual configuration of the instance locations or automatic agent

discovery. The latter mechanism is implemented through the use of a service discovery protocol based in

DNS-SD [3]. This way, appearing Node Managers are detected by the Environment Manager and are added

to the agents network automatically. Similarly, agent and node malfunctions are also detected and notified to

the Environment Manager, reporting a runtime incidence.

5. Case Study: Glassfish JEE Instrumentation

The ITECBAN project has developed a service-based, complete banking solution. The functionality is

provided by application servers, business rule systems, business processes and information systems. In

addition to the infrastructure, the project has created a complete set of supporting middleware and services

that enable the provisioning and operation of the developed services. Distributed management is one of the

main functions provided, using the agents infrastructure to instrument the runtime environment. The direct

interaction with the physical systems is performed with Context Gatherer and Actuator agents, while the

global view of the system is coordinated with Node Managers and a central Environment Manager element.

In order to clarify how the presented information model can successfully capture the information from

elements with such different characteristics we present the technical details behind one of the developed

agents: the Glassfish Context Gatherer. Glassfish is an open source project led by Sun/Oracle that provides

the reference implementation for the Java Enterprise Edition standard. The presented agent connects to

Glassfish management interfaces and obtains from them a Container instance of the information model.

Application servers that meet the Java EE standard (such as Glassfish) must implement two management

specifications. These specifications are the JSR (Java Specification Request) 77 [6] and the JSR 88 [4], that

respectively define monitoring and deployment interfaces based upon JMX management beans. However, the

first one does not provide a rich enough description of the runtime state, leaving to each application server

implementation the responsibility to fill this gap. Glassfish achieves this with the AMX (Advanced

Management eXtensions) [5] specification, that extends the management beans with the required methods.

Consequently, in order to retrieve the server state, the Glassfish Context Gatherer must use JMX to connect to

the MBeans Server and interact with the AMX and JSR 77 interfaces.

In order to cope with the heavy throughput and reliability requirements of an enterprise domain, Glassfish

servers are deployed in a cluster configuration. This way, there is a pool of server instances with replicated

functionality, and a load balancer that routes the requests among them. Glassfish agents monitor that instances

are correctly running, and a cluster definition defines what resources are shared among all the instances (such

as connections to remote systems, or datasources to access the information systems), as well as what software

components should be deployed at the cluster. Figure 3 shows a graphical representation of the decided

mapping. The left-hand side shows the available information from AMX objects, while the right-hand side

shows the equivalent information model elements. In the following paragraphs we present how we have

modeled all those elements with the presented abstractions.

A cluster configuration expands over multiple computing nodes, distributing the cluster definition, the

different instances and the load balancer. However, for management purposes all those elements constitute a

single entity, which corresponds to a Container in our model. Cluster shared resources (e.g. datasources), as

well as deployed software artifacts, should be modeled as container resources.

Additionally, the management system must be aware of the pool of cluster instances. Each one of them

will be modeled as a resource of the container, belonging to the type j2ee.cluster.instance. Instance-specific

characteristics, such as the http service port, will be modeled as properties. Finally, the information about the

load balancer that manages requests to the cluster will be represented as another container resource, of type

j2ee.cluster.lb.

Cluster c1

Deployed Applications

Datasources

Properties

Agent a1

Instance 1

IP: Hostname

HTTP Port JMS Port

HTTP Port JMX Port

Load Balancer

ds:Resource

prop:Property

0..*

0..* containerResources

c1: Container

app: RuntimeUnit

0..*

units
0..*

props

i1:Resource

lBal:Resource

0..1

Fig. 3 Mapping of AMX Managed Beans to the Generic Information Model

This way, the developed Context Gatherer will retrieve the information in the container specific format

and will build model instances by applying the defined mapping. Additionally, Actuators will translate

generic management operations and invoke the specific management interfaces. The following code listing

presents an XML fragment of the collected information from a Glassfish cluster, modeled as a Container

element of our information model.
<Container>

 <name>cluster1</name>

 <containerTypes>

 <containerType>

 <name>es.itecban.deployment.container.jee.glassfish.cluster</name>

 <version>2.1</version>

 <containerResources>

 <containerResource>

 <name>instance4</name>

 <runtimeResourceTypes>

 <type>es.itecban.deployment.j2ee.cluster.instance</type>

 </runtimeResourceTypes>

 <runtimeResourceProperties>

 <resourceProperty>

 <name>HostName</name>

 <value>segovia.dit.upm.es</value>

 </resourceProperty>

 </runtimeResourceProperties>

 </containerResource>

 </containerResources>

 </nodeContainer>

 <nodeContainer>

 <name>cluster2</name>

 <containerResources>

 <containerResource>

 <name>instance2</name>

 <resourceProperty>

 <name>HostName</name>

 <value>indra1.dit.upm.es</value>

 </resourceProperty>

 </containerResource>

 <containerResource>

 <name>instance3</name>

 <resourceProperty>

 <name>HostName</name>

 <value>indra3.dit.upm.es</value>

 </resourceProperty>

 </containerResource>

</Container>

6. CONCLUSIONS

In this paper we have presented a complete model and agent architecture to instrument distributed

heterogeneous information systems, enabling its automated management. The system seamlessly interfaces

between the generic models and the heterogeneous elements of the managed system, thanks to an adaptation

layer provided by the combination of the information model and the extensible agents infrastructure. Model

abstraction enables the management system to reason generically about the environment, being oblivious to

the specific implementation details. Context Gatherers are the architecture elements that are specific to the

environment characteristics. Additionally, the proposed architecture can respond to changes in the runtime

environment, such as the appearance or disappearance of a node.

We have successfully applied this proposal to manage a distributed banking infrastructure. We present in

this article the fundamental concepts from one of the main Context Gatherers, the responsible of the

instrumentation of Glassfish Application servers. The selected component is interesting because of its

importance as the reference implementation of the JEE specification, and also because of the challenge of

modeling application server clusters.

The work presented offers many opportunities for future developments, as the definition of management

policies for modeled environments, or the implementation of an automatic feedback loop that would not only

detect the appearance or disappearance of a node in the system, but also plan a modification of its state to

take advantage of this event.

7. ACKNOWLEDGEMENTS

The work presented in this article was developed in the context of ITECBAN project, partially funded by

CDTI (Centro para el Desarrollo Tecnológico Industrial) and MITYC (Ministerio de Industria, Comercio y

Turismo de España).

8. REFERENCES

[1] Agrawal, D., Lee, K. and Lobo, J., “Policy-Based Management of Networked Computing Systems”, IEEE

Communications Oct 2005.

[2] Bullard, V., Vambenepe, W., WSDM, Web services distributed management: Management using Web services

(MUWS 1.1), OASIS Standard, August 2006. Available at http://www.oasis-

open.org/committees/download.php/20576/wsdm-muws1-1.1-spec-os-01.pdf

[3] Chesire, S., Krochmal, M., DNS-SD, DNS Service Discovery, IETF Internet Draft, available at: http://files.dns-

sd.org/draft-cheshire-dnsext-dns-sd.

[4] Dochez, J. et al, “JSR 88, Java EE Application Deployment”, available at http://jcp.org/en/jsr/detail?id=88

[5] Glassfish Development Team, “AMX Specification”, available at https://glassfish.dev.java.net/javaee5/amx

[6] Hrasna, H. et al, “JSR 77, J2EE Management”, available at http://jcp.org/en/jsr/detail?id=77

[7] IBM, An architectural blueprint for autonomic computing, IBM Whitepaper, available at http://www-

03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf

[8] Information Model (CIM) specification v2.1, DMTF standard, http://www.dmtf.org/standards/cim

[9] Jennings, B., van der Meer, S., Balasubramaniam, S., Botvich, D., Foghlú, M.O., Donnelly, W. and Strassner, J.,

“Towards Autonomic Management of Communications Networks”, IEEE Communications, Oct 2007

[10] Object Management Group, “Deployment and Configuration of Component-based Distributed Applications

Specification.” version 4.0 formal/06-04-02, 2006.

[11] Verma, D.C., Simplifying Network Administration Using Policy-Based Management, IEEE Network, March 2002

[12] Versendaal, J., Gils, B.V. Janssen, W. “Operational Excellent Application Management: A Case Study at an

Insurance Company” IADIS International Conference Information Systems 2010, pp.191-198, 2010. IADIS IS 10

http://jcp.org/en/jsr/detail?id=88
https://glassfish.dev.java.net/javaee5/amx
http://jcp.org/en/jsr/detail?id=77
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www-03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Paper_4th.pdf
http://www.dmtf.org/standards/cim

