
A model for enabling context-adapted deployment and configuration
operations for the banking environment

Félix Cuadrado*, Juan C. Dueñas*, Rodrigo García*, José L. Ruiz**

*Universidad Politécnica de Madrid, ETSI Telecomunicación,
 Ciudad Universitaria s/n. 28040, Madrid, Spain

** Indra, c/José Echegaray 8,28108 - Parque Empresarial - Las Rozas, Madrid, Spain
*{jcduenas, fcuadrado, rodrigo}@dit.upm.es,**jlrrevuelta@indra.es

Abstract-In the banking sector business requirements
continuously change whereas IT infrastructure
investments must be amortized over years. This conflict
produces very heterogeneous systems. Adopting the
SOA / BPM approach helps coping with that
complexity. This way, everything is a service, easing
composition and integration. On top of that, strict
security and reliability requirements exacerbate the
need of a robust management infrastructure. We
propose a service-centric operational management
architecture for which we have defined a resource
model based on the leading standards for
characterizing systems, services and operations. This
model is supported by a dynamic agent infrastructure,
which automatically instruments the targeted
environments. These concepts are illustrated by a
proof of concept consisting of deployment and
configuration activities over distributed banking
services.

Keywords- Service-oriented architectures, Service
instrumentation, Service Management, Context
adaptation

1. Introduction
In the banking sector investments in legacy systems
must be amortized over long periods of time. On top of
that, it is necessary to upgrade applications and
services, and adopt new technologies for B2B and
presentation services. Thus, systems are composed by
not only legacy systems, mainframes, databases, but
also JEE application servers, or BRM (Business Rule
Managers) systems. The SOA / BPM approach [1] is
the preferred way of operating these heterogeneous
systems. This way, each artifact of the system is
presented as a service, hiding its implementation details
and providing a uniform high-level view. Services are
published in directories and connected through an ESB
(Enterprise Service Bus). On top of that, Business
Process Management technologies, such as BPEL

(Business Process Execution Language), orchestrate
the activities, bridging the gap between the IT
infrastructure and the business processes.

Competitiveness and innovation demand releasing
frequent upgrades and new services. At the same time,
developed artifacts must comply with high standards of
security and reliability. These requirements fall under
the management architecture, which must support
monitoring accurately the system, reacting to
unexpected behavior, as well as deploying new
services, upgrading system artifacts or executing
configuration activities. All in all, it must deal with all
the heterogeneity and complexity of the banking
infrastructure, as well as the abstractions provided by
the service layer used for operation.

These problems are not new, and have been addressed
by several tools and standards. The main problem with
available commercial service management suites is
that, while they successfully manage those
environments, they frequently force users to adopt their
own product family for the base system infrastructure.
On the other hand, network and system management
tools are not well suited to managing these runtime
services, focusing on the base infrastructure instead.

Because of that, we have developed a service-centric
management architecture for distributed services. This
paper describes our information model for
characterizing manageable services, and a monitoring
infrastructure for adaptation to the context
environment. First, we present a brief overview on the
relevant standards and initiatives in the field of
software and services management. Our contributions
are further described through a proof of concept,
consisting of deployment and configuration of a
distributed application over a reference banking
environment.

mailto:jlrrevuelta@indra.es

2. State of the art
2.1 Service Management Information Models
There are several information models targeted at the
description of heterogeneous distributed environments.
The CIM (Common Information Model) [2] is an
object-oriented model for describing overall
management information in a networked enterprise
environment, maintained by the DMTF (Distributed
Management Task Force). CIM is structured as a core
model, defining the basic elements, and extensions for
detailing parts of the system, such as databases,
networks, applications, software products and devices.
The depth of the modeling and the granularity of the
standard usually mean CIM-compliant tools support
selected profiles or custom extensions from the base
model.

The OMG Deployment and Configuration (D&C)
specification [3] provides a model for representing
deployment and configuration operations over a
distributed target. The model is object-oriented, simple
and flexible. D&C base elements are resources, which
are named entities classified into one or more types.
Resource instances model physical artifacts, such as
nodes, bridges and links. Resources are parameterized
with a collection of properties. Each property has a
name, a value and a kind, which determines the
consumption nature of the resource. The combination
of types and properties enables resource managers to
operate on heterogeneous environments working with
the same base concepts. However, the model is focused
on modeling network and hardware resources instead
of service management elements.

MUWS (Management Using Web Services) [4] is a
standard of the OASIS WSDM group, aiming at
describing and managing resources through Web
Services. In MUWS each manageable element of a
distributed system is modeled as a resource.
Manageable resources have a well-defined set of
operations, known as capabilities. The specification
defines basic capabilities, such as description (which
allows to obtain resource’s name and version), state,
metrics or configuration (through properties
configuration). This mechanism is extensible, allowing
some resources to expose specific management
interfaces in addition to the basic ones.

2.2 Heterogeneous system management
Traditional management processes involve human
operations over a management administration console.
However, the increase of complexity, distribution and
heterogeneity of current IT systems is stressing the

limits of this approach. On top of the aforementioned
domain models, management tools must aggregate the
runtime information of the system and apply the
necessary operations automatically. That is the reason
for the surge of the autonomic computing paradigm [6].
A self-managing system can greatly reduce its
operation cost and perform automatically well-known
management processes. Autonomic managers
implement an intelligent control loop for automating at
least some of the management aspects of a resource.
For environment-wide operations managers can be
orchestrated, and still be manually managed in some
critical cases.

The PBM (Policy-Based Management) [5] presents a
complementary approach for automating system
management based on the use of policies. Policies are
usually defined as rules, which allow reasoning over
the collected information and invoke operations on the
management interfaces. This combination provides a
simple mechanism for modifying the behavior of the
autonomic manager. PMAC (Policy Management for
Autonomic Computing) [7] is an example platform
which leverages policies, written in their own language,
ACEL to an autonomic manager. A similar approach is
adopted by Focale [8], an autonomic manager
implemented with ontology-based policies.

In our scenario we would need to define configuration
and deployment policies for a distributed system where
multiple services from heterogeneous sources are
composed to provide functionality. But before that, we
need to define a common information model or
ontology. So far, none of the evaluated standards
provide a unified framework for achieving that.

3. Management Model and Architecture
Our proposed deployment and configuration
architecture is envisioned to work over heterogeneous
environments. It also must be able to dynamically adapt
to changes in those environments without manual
intervention. These high-level requirements have been
detailed and expanded into a set of use cases for the
complete management architecture, such as:

• Increase the size of a cluster of servers (and
automatically replicate the deployed services
on the new node) to maintain a SLA (Service-
Level Agreement) over an increased number
of requests.

• Deploy a new service to the environment. The
service is provided by several elements
deployed to different nodes. The operation is
executed in a transactional manner, with a
feedback channel guaranteeing the stability of

the system during the operation, and reverting
back to initial state on the occurrence of
failures.

• On the appearance of an additional
implementation of a service, configure a load
balancer to redistribute service requests

In order to fulfill these scenarios the context adaptation
layer plays a fundamental role. This section describes
its two main elements: a common resource model,
shared by every entity, suitable for heterogeneous
systems and services, and an instrumentation
infrastructure bridging the gap from the model to the
specifics of each vendor technology.

3.1 Resource model
After the analysis of some of the most important
resource information models and management
approaches, we have identified common ground in the
concept of manageable resources, both in D&C and
MUWS standards, as the root of their models.
However, for managing heterogeneous applications and
services the standards do not provide a complete
solution. For example, the lack of resource versioning
information limits the capability to handle services and
their dependencies correctly. On top of that, we need a
model able to integrate resources both from the
environment and the services implementations. We
have defined our model based on those standards and
implementing these additional requirements, part of
which can be seen in Figure 1.

The main elements of the model, defined in XML
Schema, are resources, defined as manageable entities
of the system.. A resource has a name, a version
identifier and a set of properties for its complete
characterization. In addition to that, resources are
classified into types, which allows management
systems to define actuators and policies which
automatically apply to the matching elements. The
model definition is complemented by a resource
taxonomy, for characterizing the basic assets of a
banking production environment (ranging from
services to containers).

On top of this base element we have modeled both the
operation environments, and the applications and
services. Both models are linked through resources.

The software model focuses on describing deployable
software and services. As services are runtime entities
they are clearly modeled as resources in our
information model. The model provides a detailed
description of the software artifact that provides the
runtime service (in our terminology, a deployment
unit). A deployment unit definition includes its logical
dependencies, as well as constraints on the
environment in order for the unit to be installed and
work correctly (e.g. minimum amount of RAM
memory). The model adopts the main elements of CIM
Application Model for describing software artifacts,
ranging from Software Products to the low-level
resources available at runtime.

SoftwareProduct
name string
version string
warranty [0..1] Warranty
features [0..*] SoftwareFeatures
dependencies [0..*] SoftwareProduct
SKUnumber [0..1] string
idNumber [0..1] string

Dependencies
depExpression [1..1] string
dependency [1..*] Dependency

DeploymentUnit
description [0..1] string
provider [0..1] Provider
Package Package
exportedResources [1..*] Resource
dependencies [0..1] Dependencies

Resource
name [0..1] string
version [0..1] string
types [1..*] string
properties [0..*] ResourceProperty

ResourceProperty
name string
value anyURI
kind PropertyKind

Dependency
id [1..1] string
locality [0..1] LocalityConstraint
Description [0..1] string
requiredResource Resource
container [0..1] Package

Figure 1 Resource and software model

On the other hand, the environment model describes
the topology of the environment, using the D&C target
data model. Environments are composed by nodes,
interconnects and bridges. These elements are further
characterized by resources, extended in our model with
version information. In addition to that, we have added
containers hosted by nodes, an additional element for
representing the containers of applications and
services, as they play a vital role in services
configuration and deployment.

Then, services are described by means of the software
model which contains both resource requirements
(needs of the services implementations), and resource
offerings (parts of services implementations that can be
used by other ones). The operation environment is also
described by the model –that can ultimately be
transformed into a set of offered resources-. A model-
based management architecture needs to provide two
additional functions: the capability to get information
about the operation environment in execution (we call
this agent infrastructure); and the component able to
match the resources offered by this environment with
the resource requirements given by each piece of
services implementation.

3.2 The agent infrastructure
The agent infrastructure must instrument dynamic
heterogeneous systems, by means of translating the
context-specific information to our generic model. On
top of that, it must react to changes to the topology of
the environment. So, agents must have a mechanism for
automatically aggregating information from new
elements. However, manual configuration mechanisms
must also be supported for agents providing critical
information, which can’t be automatically integrated,
due to environment firewalls.

With these requirements in mind, we have designed a
layered infrastructure for instrumenting the target
environment. Its main features are automatic
aggregation of agents and the capability to
automatically adapt to context changes. It is composed
by several elements:

The Node Manager: manages the capabilities/resources
available at the node it is handling. Hardware and
software resources are read, monitored and managed
thanks to the association with the ContextGatherer. In
addition, it executes deployment and configuration
operations: installation, activation, deactivation,
(re)configuration, removal and update of deployment
units.

The Context Gatherer: collects node resource
information and exposes this information through well-
defined services using the resource model. Information
can be provided by sources of different nature, e.g.
operating system details (version, name, libraries
installed and so on), hardware resources (static
capacities and available free resources), container
configuration, battery life, etc. There can be a different
context gatherer for each type of context (hardware,
operating system, container, services implementations,
etc). The adaptor design pattern has been used to create
a progressive and scalable implementation of the
Context Gatherer. In order to avoid excessive resource
consumption during this process an event driven model
for the communication among context agents and the
gatherer is applied.

The Actuator: performs deployment and configuration
operations on specific resources / containers of the
environment. Each actuator executes one or more
operations (i.e. configure container, install deployment
units) on some parts of the environment .The taxonomy
allows matching containers to compatible actuators.
The Environment Manager: coordinates the activities
that take place at the environment. It communicates
with the existing node managers to provide an
aggregated monitoring view of the system and delegate
the deployment and configuration activities to the
specific actuators. It is aware of node manager
instances running on the deployment target, as well as
its capabilities. This information can also be manually
configured by an administrator, and stored into a
configuration database. However, creating the
description of the environment is usually an arduous
task. And even worse, descriptions have to be updated
according to changes in the target. We have automated
this process by means of including a discovery

EnvironmentManager NodeManager

 Environment Node

ContextGathererActuator

DiscoveryService

1..*

Controls >

monitors
operates

monitors
operates

1..*

1..*
1..*

Autonomic Manager

Service Descriptions Repository

Figure 2 Instrumentation Infrastructure

mechanism based on DNS-SD (Service Discovery), so
it detects node managers as they come and go and
therefore avoid most manual configuration operations.
The manager also ensures each discovered node
manager is working properly, sending a fault message
and removing it from its list otherwise.

4. Case Study
In the ITECBAN project we needed a configuration
and deployment architecture matching the demands of
heterogeneous banking systems. As a reference
scenario, we work over a SOA / BPM banking services
platform composed of several interconnected services.
The target environment is composed of three nodes
with several execution containers provisioned, both
commercial and open source: JEE application servers
(BEA Weblogic and JBoss), an ESB (Apache
ServiceMix), a database (Oracle 10g), a BPM engine
(Oracle BPEL Process Manager) and a BRM
repository (Drools BRMS). Over this scenario a
reference banking service has been developed. The
banking service is composed by five components (war
files, rule packages, DDL data definition files and
BPEL business processes), which must be deployed
over containers, as shown in the figure 3.

In this case study we use the instrumentation
infrastructure to enable distributed deployment of the
banking services implementations. The operation is
executed transactionally, ensuring the stability of the
managed environment. The environment manager and
node managers provide the topology information.
Context gatherers contribute information about the

installed containers and the available resources.
Actuators are registered for the deployment operations
on each different containers. We can see a short
fragment of the automatically generated environment
snapshot in the following listing.

<node>
 <name>node1/ip</name>
 <nodeContainers> <nodeContainer>
 <name>node1-weblogic</name>
 <containerTypes><containerType>

 <name>es.itecban.deployment.
container.jee</name>

 <version>5.0</version>
 </containerType></containerTypes>
 <supportedPackages>
 <containerPackage>
 <type>es.itecban.deployment.
packaging.war</type>
 </containerPackage> …
 </supportedPackages>
 <containerResources>
 ...

</containerResources></nodeContainers>
</node>

Additionally, each individual software component has
been described based on the resource model,
expressing service dependencies and environment
constraints. The deployment manager processes these
models, and performs a resource matching between the
software dependencies and the environment. After the
models have been processed, an installation plan
adapted to the specific environment is obtained. The
plan is composed by a set of activities which will be
performed by each installer, involving several
containers of the environment. The use of context
information in the plan creation allows optimizing the
list of activities, skipping the installation of
components already present at the environment.

The deployment manager uses both sensor and actuator
channels of the environment manager, closing an
intelligent loop which allows deploying services
implementations. Each operation includes a verification
check for validating if it has been correctly executed,
based on the observed changes to the environment. If at
any stage of the plan a problem appears, the manager
undoes every registered step in order to go back to the
initial stable state.

The example illustrates the main advantages of our
approach. By using the same base model for the
description of both the services implementations and
the target environment we can automate the
management operations, which follow this basic cycle:

Node 1

Node 2 Node 3

 Weblogic BPEL PM

 ServiceMix
 Drools

 Oracle

W
eb

B
sn

R
ules

B
PEL

SA

D
ata

Figure 3 Logical view of the banking service

1. Receive requests for changes to the
environment, referred to services elements,
and described as sets of resources
requirements, and sets of new resources
offered by the services elements

2. Collect information about the environment,
identify the set of resources offered by the
environment and present it using the resources
model

3. Match resources required by the services
elements with the resources offered by the
environment

4. Search for new services elements that fulfill
resources requirements not completed by the
environment, until all the resources
requirements are filled

Thus, we can say that the infrastructure adapts
automatically to the environment, and the model
provides the common base for the deployment and
configuration manager. This way, the manager can
automatically create a change plan tailored to the
service and the runtime state of the environment. The
manager esolves service dependencies, maps installable
artifacts to valid nodes from the environment, and
creates the configuration operations for a correct
service binding. The model plan is carried out by the
designed actuators, translating it to specific operations
from the systems. Most of these operations can be
performed automatically, except in the case of not
being able to complete the resources requirements,
where human intervention would be required.

5. Conclusions
We have created a resource-centric model for
describing services as well as its environment. This
common ground for both services and systems supports
an unified view, and transversal logic among the two
worlds. In addition to that, the resource taxonomy
enables automatically matching dependencies, as well
as actuator agents to the containers of the environment.
Besides, the agent infrastructure mediates between the
model and the specific details of the environment.
Automatic discovery and aggregation mechanisms
greatly improve their reusability on different
environments (or dynamics) without additional
configuration.

Our case study shows how our instrumentation
architecture enables a deployment and configuration
distributed control system, taking to practice autonomic
principles during the execution of a high-level system-
wide activity (deploying a banking service).

Future work will be oriented at extending the
deployment and configuration manager in order to
improve management of the whole services lifecycle,
by extending the functionality of actuators. Also, the
model can be extended to support the management of
virtual environments. This way, it would be possible to
operate at the topology level for coping with changing
requirements (for instance, creating a new virtual node,
provisioned with another server, where the service is
installed, and configuring a load balancer to distribute
the traffic).

Acknowledgements
ITECBAN is an IT innovation project partially funded
by CENIT (a Spanish public R&D program). The
authors are grateful to MITYC (Ministerio de Industria,
Turismo y Comercio) and CDTI (Centro para el
Desarrollo Tecnológico e Industrial) for supporting
ITECBAN through CENIT and Indra as the main
contractor of the project.

References
[1] S. Brahe, BPM on Top of SOA: Experiences from the

Financial Industry, Lecture Notes on Computer Science
4714, pp. 96-111, ISSN 0302-9743 2007.

[2] Information Model (CIM) specification v2.1, DMTF
standard, http://www.dmtf.org/standards/cim

[3] Deployment and Configuration of Component-based
Distributed Applications Specification. OMG formal
specification version 4.0 formal/06-04-02, 2006.

[4] V. Bullard, W.Vambenepe, WSDM, Web services
distributed management: Management using Web
services (MUWS 1.1), OASIS Standard, August 2006.
Available at http://www.oasis-
open.org/committees/download.php/20576/wsdm-
muws1-1.1-spec-os-01.pdf

[5] D. C. Verma, Simplifying Network Administration
Using Policy-Based Management, IEEE Network,
March 2002

[6] An architectural blueprint for autonomic computing,
IBM Whitepaper, available at http://www-
03.ibm.com/autonomic/pdfs/AC_Blueprint_White_Pape
r_4th.pdf

[7] B. Jennings, S. van der Meer, S. Balasubramaniam, D.
Botvich, M. O. Foghlú, W- Donnelly and J. Strassner,
“Towards Autonomic Management of Communications
Networks”, IEEE Communications, Oct 2007

[8] D. Agrawal, K. Lee and J.Lobo, “Policy-Based
Management of Networked Computing Systems”, IEEE
Communications Oct 2005.

http://www.dmtf.org/standards/cim

	1. Introduction
	2. State of the art
	2.1 Service Management Information Models
	2.2 Heterogeneous system management

	3. Management Model and Architecture
	3.1 Resource model
	3.2 The agent infrastructure

	4. Case Study
	5. Conclusions
	Acknowledgements
	References

