
9 0 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

Moreover, the degree of success varies
greatly among F/OSS communities, and many
projects have died before delivering a first re-
lease. They usually failed to create a supporting
community—only one or two developers4,5 had
tried to sustain them. These projects tend to go
inactive and often vanish completely.6 In fact,
there is some evidence that relates the evolution
of F/OSS systems to that of their communities.7,8

As a general rule, F/OSS projects don’t produce
viable systems if their teams don’t achieve a criti-
cal mass of 5 to 15 developers.3 These facts sug-
gest that kicking off a F/OSS project is one of its
most critical phases9–11: it requires experience in
creating and engaging the community, as well
as basic infrastructure and management skills.
At the same time, the participants must define
the technical scope and domain. Since meri-
tocracy and volunteer effort are two corner-
stones of the F/OSS movement, the communi-

ties of recently launched projects grow mainly
by subscription.

Recent studies propose the emergence of a
new organizational model for F/OSS, called
OSS 2.0, based on aggregating communities
into ecosystems at some point between the
“cathedral” and the “bazaar.”12 Under this ap-
proach, communities adopt some practices of
traditional software development processes and
organizations, focusing on their long-term sur-
vival and better use of resources. However, no
one has looked at projects’ early phases, when
the communities supporting them are born and
thus are in a weaker position to face high risks.

To nurture healthy communities, deliver sta-
ble releases, and manage initial risks, organiza-
tions follow various incubation processes and
approaches. We analyzed such processes in two
well-known communities; here, we present our
results and describe some underlying princi-

feature
Apache and Eclipse:
Comparing Open Source
Project Incubators

T
he popularity of free and open source software has boosted the cre-
ation of several kinds of communities around F/OSS projects. Suc-
cessful communities such as GNU, Mozilla, the Apache Software
Foundation, and the Eclipse Foundation drive innovation while de-

livering high-quality, enterprise-class software. Yet, because communities are
composed of loosely coordinated contributors mainly guided by practice, no
shared agreement exists on a single set of methods and processes.1–3

open source

Juan C. Dueñas, Hugo A. Parada G., Félix Cuadrado, Manuel Santillán,
and José L. Ruiz, Universidad Politécnica de Madrid

A two-stage
incubation model
based on analysis
of Apache and
Eclipse processes
might help other
organizations build
their own incubation
process and better
manage risks.

ples. We also propose a set of best practices for
applying this kick-off approach in newborn
F/OSS projects and define a path to future re-
search about the life cycle of open source proj-
ects and communities.

Context
To date, most of F/OSS case study research

has focused on low-structure communities with
many small projects. SourceForge, combining
the notions of community, repository, and proj-
ect management tool, is a good example of this
kind of community. It comprises more than
116,000 projects, with a rough average of two
developers per project (see data at the FLOSS-
mole Project, http://ossmole.sourceforge.net).
However, consolidation is also taking place in
F/OSS, and stronger communities are becoming
more relevant. They run fewer but bigger proj-
ects and deal with risk more effectively. Two
leading F/OSS communities, Eclipse and Apache,
are successfully applying incubation processes.
Compared to others, their models can be consid-
ered intermediate between the cathedral and
bazaar paradigms because their processes’ degree
of formalization is higher.

F/OSS development activities are open, so
project information is made public over the
Web.4 However, the artifacts generated in differ-
ent communities and projects vary significantly,
both in quantity and quality. In popular proj-
ects, active members of the community continu-
ously update and improve the artifacts; in other
projects, information is scarce and outdated.

In our study, we hypothesized that the level
of F/OSS community activity is a determining
factor in project success. We followed a mixed
approach that combined assessing the work
from a qualitative perspective and analyzing
the generated outputs quantitatively. In this
way, we evaluated aspects such as roles, pro-
cess formalization, Web sites, minutes, rele-
vant email messages, project proposals, and
milestone schedules. Concerning the quantita-
tive analysis, we considered variables such as
the number of incubated projects, the number
of projects that graduated, the remaining proj-
ects, incubation start and graduation dates,
and the number of committers per project.
The statistical population being small, we in-
tentionally avoided analysis techniques aside
from basic statistical tools such as average and
linear regression to obtain trends that confirm
or deny apparent causal relationships; we cal-

culated statistics and project status as of April
2006. Because these are young, dynamic com-
munities, the amount of data will increase,
helping to further refine our conclusions.

Incubator exploration
Concerning the selected communities, Eclipse

is an industry-driven initiative in which more
than 100 companies, universities, and contribu-
tors deliver open source applications around the
Eclipse environment. The Apache Software
Foundation is a highly successful initiative, made
up of individuals, that provides popular, high-
quality, open source software. (According to a re-
cent Netcraft survey, more than half of the
world’s Web sites use its Web server; see http://
survey.netcraft.com/Reports/200708/byserver).
Initially founded around the Apache Web server,
the ASF currently provides many other libraries
and software infrastructure elements. Both com-
munities follow a mature approach to F/OSS,
having established incubation processes to face
the problems inherent in project launches.

The Apache Incubator
The Incubator is the entry path into the

ASF for projects and code bases wishing to be-
come part of the Foundation’s efforts. As the
Apache Web site explains (www.apache.org/
foundation/how-it-works.html), the Incubator’s
main responsibilities are to

■ filter proposals,
■ help create projects,
■ evaluate an incubated project’s maturity, and
■ promote the creation of a community that

shares the ASF’s principles, including mer-
itocracy as one of its central elements.

Two types of projects can graduate: subproj-
ects that have finalized the incubation period
and are added into an already existing top-level
project, and top-level projects that shape the
main lines of the foundation’s evolution and
can sponsor other incubated subprojects.

Roles. The Incubator Project Management Com-
mittee supervises the incubation processes. The
PMC accepts projects and provides the technical
and administrative support required; it regularly
reviews incubated projects, proposing them for
termination, continuation, or escalation.

In addition to the PMC, some roles are de-
fined per project. Candidates put forward

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 9 1

The OSS 2.0
organizational

model
aggregates

F/OSS
communities

into ecosystems
at some point
between the

“cathedral” and
the “bazaar.”

project proposals. The champion is a founda-
tion officer or member who helps candidates
make their initial submission to a sponsor. The
sponsor is the ASF entity that defends the proj-
ect candidate as a worthy contributor and
agrees to supervise the candidate in question.
Upon the Incubator PMC’s acceptance, the can-
didate becomes a podling (a project in the re-
view phase, before graduation) under its care.
The mentor is a permanent ASF member who
has specific responsibilities toward the Incuba-
tor PMC, the sponsor, and the members of the
assigned podling project. For example, the men-
tor helps, guides, and protects the project on the
basis of his or her experience with the process
and familiarity with incubation policy and pro-
cedures. A mentor keeps timely communication
between the PMC and podling members (the
community) about the decisions that affect the
project; in other words, the mentor is the con-
tact point between the community and the PMC
Incubator.

Process phases. The process shown in figure
1a has three main phases: establishment, ac-
ceptance, and review (http://incubator.apache.
org/incubation/Process_Description.html).
The establishment phase consists of finding a
champion, preparing a proposal, and present-
ing it. Then, the champion assigns candidate
status to the project.

In the acceptance phase, the sponsor as-
sesses the proposal and either accepts or re-
jects it. If it’s accepted, the sponsor proposes

to the Incubator PMC the escalation of the
candidate project to podling status, and the
sponsor assigns a mentor to the project.

During the iterative review phase, the In-
cubator PMC assesses project status. Three
outcomes are feasible: the project can be ter-
minated, continued (during which the project
must take the development recommendations
into account), or engaged (the project is ac-
cepted into the ASF as either a subproject or
a top-level project). The project can deliver
releases while it’s in the review phase, but the
ASF won’t endorse the releases because it hasn’t
fully accepted the podling project as part of
the foundation.

The Eclipse incubator process
The Eclipse development process is formally

defined in governance documents (www.eclipse.
org/org/documents) and updated on the Web site
(www.eclipse.org/projects/dev_process). Eclipse
views incubation only as the first validation
phase within the project life cycle. During this
phase, the development process starts and the
project’s community is born. Thus, the project is
firmly established after incubation.

In our research, we assume that both the
proposal and the creation review are key stages
in this process because, as figure 1b shows,
they are the entry point to the incubation/vali-
dation phase. This process, in contrast with the
Apache Incubator, doesn’t use a separate place
for the incubation phases. In Eclipse, projects
are incubated within the top-level Technology
project, concentrating in this area all the proj-
ect creation experience.

Roles. Like the ASF, the Eclipse high-level
structure differentiates between standard and
top-level projects. Each top-level project has
several projects and one PMC with executive
authority. Each standard project organization
consists of the project lead and the develop-
ment team (committers and developers), who
are respectively responsible for planning the
project (through a milestones schedule) and
defining the technical architecture. Once the
PMC approves the proposal, this structure is
established—that is, the roles and responsibil-
ities are assigned in agreement with Eclipse
bylaws. Decisions are made by voting; the
PMC handles decisions for standard projects,
and the Eclipse Management Organization
(EMO) does so for top-level projects.

9 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Project

Review

(a)

Establishment Acceptance
Candidate

Graduation

Continuation

Podling

Rejection Termination

Incubation

(b)

Proposal ValidationCreation
review

Stable releaseCheckpoint
review

Rejection

Figure 1. Incubation
processes: (a) the
three Apache phases
of establishment,
acceptance, and
review; and (b) the
Eclipse incubation/
validation process.

Process phases. Figure 1b illustrates the pro-
cess. The preproposal phase starts with a
short declaration of an individual’s or com-
pany’s interest in establishing a project. The
first step is to decide whether to graduate the
new idea as a top-level or regular project or
as part of another project. The next step is to
contact the EMO and extend the project
proposal.

The creation review consists of a short pres-
entation containing a brief proposal summary,
a report about the community response to the
proposal, current project participants, initial
implementation focus, confirmation that the
project members have read and understood the
Eclipse development process, and the guide-
lines and future directions. As a result of the
creation review, the project can be accepted, re-
jected, or conditionally accepted (the EMO can
give comments). If it’s approved, the project es-
tablishes an infrastructure and the PMC nomi-
nates the initial committers for EMO approval;
if comments are made, the proposal must take
them into account before presenting the up-
dated creation review. Once the project passes
creation review, it’s formally created and the
project structure is adopted.

The validation phase deals with issues such
as identifying critical use cases, producing a
high-level design (architecture), acquiring all
the necessary intellectual-property rights, and
establishing the committer community around
the project. This phase ends with a checkpoint
review that evaluates the proposal in detail to
check that

■ a working and demonstrable code base
exists,

■ the community is active,
■ the project is operating fully in the open

using open source rules of engagement,
■ the project adopts Eclipse’s philosophy

and principles, and
■ an in-depth review of the project’s techni-

cal architecture takes into account its de-
pendencies and interactions with other
projects.

The project leader asks the EMO for a
checkpoint review when the project leader be-
lieves the project meets the exit criteria. If the
EMO approves the checkpoint review, the
project delivers a stable release and the incu-
bation phase ends.

Quantitative analysis
Once we identified each community’s prin-

ciples, roles, and phases, we studied their incu-
bators’ behavior by applying simple statistic
analysis on the available data.

Apache
Since the Incubator’s creation, the ASF has

incubated 55 projects, of which 22 have suc-
cessfully graduated, 31 are still waiting for
graduation, and two were terminated. To assess
the incubation process, we separated the proj-
ects into the graduated ones and those still in the
Incubator.

Projects remaining in incubation. The left-hand
side of figure 2a shows that after five months in
incubation, 11 out of 18 projects (with more
than five committers per project) achieved a con-
solidated community. This period corresponds to
the Incubator’s fourth year and therefore to a
major level of experience among the mentors
and sponsor who were responsible for selecting
and supporting candidate projects. On the other
hand, of the projects in incubation longer than
11 months, seven had fewer than five committers
and eight had more than 18 months of incuba-
tion. This hints at the potential risk of getting in-
active. The April 2006 Incubator report showed
evidence of some of these projects’ inactivity. The
right-hand side of figure 2a highlights a dimin-
ishing trend in the number of committers when
the incubation time exceeds 14 months.

Graduated projects. Figure 2b depicts some in-
teresting issues. For the 12 projects with
shorter incubation periods, the average incu-
bation time was six months. Except for the
SpamAssassin project, all of them graduated
as subprojects within other top-level ASF proj-
ects. The experience and knowledge of their
parent projects (their Apache sponsors) helped
to shorten their incubation time. Another ad-
vantage for these subprojects was the relation-
ship they could establish with the parent proj-
ects’ developers, some of whom got involved
in the process, bringing their know-how and
contributing to the critical mass of developers
that keeps the community alive.

The remaining 10 projects had a longer in-
cubation period—12.8 months on average.
While two of them (Derby, Log4cxx) graduated
as subprojects, the rest graduated as top-level
ones, five of them having the Incubator as spon-

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 9 3

sor. This suggests that top-level projects require
a longer incubation time because they don’t
have strong relationships with existing projects
within the ASF. Moreover, projects with a
larger scope require a larger effort and more
committers. In the Log4cxx project’s case, the
low number of committers (only three) might
have affected the incubation period.

Figure 2c shows a linear regression curve re-
lating the number of committers with the incu-
bation time for graduated projects (degrees of
freedom = 20, r = 0.661119977, p = 0.001). The
correlation between the number of committers
and the incubation time is strongly significant,
and there’s a clear indication that for larger proj-
ects (those graduated as top-level ones), obtain-
ing the critical mass requires more time.

We believe incubation time is a period of
major risk for projects: they need to achieve a
stable release with a sufficient technical im-
pact while engaging a growing community.
Regarding this critical time period, the Apache
incubator doesn’t provide estimates for either
the optimal period of incubation or the phase
duration. Estimating or defining reasonable
incubation duration is hard because the com-
munity that supports these projects consists of
volunteer developers. However, on the basis of
observed data, we consider six months, plus
or minus one month, a reasonable estimation
of incubation time for subprojects. For top-
level projects, a feasible incubation time might
be 13 months, plus or minus one month.
However, activity levels during incubation are

9 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Number of commiters
Time from incubation (months)

45
40
35
30
25
20
15
10
5
0

No
. o

f c
om

m
itt

er
s

Lu
ce

ne
.N

et
Ca

ye
nn

e
AD

F
Fa

ce
s

Lo
ka

hi
Od

e
OF

Bi
z

W
eb

W
or

k
2

Yo
ko

Ka
bu

ki
So

lr
Tu

sc
an

y
w

ad
i

Se
rv

ic
eM

ix
eM

Q
Sy

na
ps

e
m

od
_f

tp
Fe

lix
Ro

lle
r

st
dc

xx
Ha

rm
on

y
TS

IK
W

od
en

Lu
ce

ne
4c

Ag
ila

Gr
af

fit
o

Ju
ic

e
lo

g4
ph

p
lo

g4
ne

t
W

SR
P4

J
Ft

pS
er

ve
r

Al
tR

M
I

Number of committers
Incubation time (months)

30
25
20
15
10
5
0

No
. o

f c
om

m
itt

er
s

Ta
pe

st
ry

To
ba

go

ht
tp

d–
CL

I

jU
DD

I

Nu
tc

h

Sp
am

As
sa

si
n

Ja
xM

e

Pl
ut

o

JD
O

He
rm

es

Ap
ol

lo

M
us

e

M
yF

ac
es

iB
AT

IS

XM
LB

ea
ns

De
rb

y

Lo
g4

cx
x

Be
eh

iv
e

Ge
ro

ni
m

o

Di
re

ct
or

y

Le
ny

a

Ja
ck

ra
bb

it

Number of committers
Incubation time (months)

(a)

(b)

(c)
0 1 2 3 4 5 6 7 8 9 2010 11 12 13 14 15 16 17 18 19

30

25

20

15

10

5

0

Incubation time (months)

No
. o

f c
om

m
itt

er
s

Figure 2. Apache
Incubator data:
(a) remaining projects
in incubation,
(b) projects that
graduated from
incubation, and
(c) the regression
curve for committers
versus time in
graduated projects.

as important as the duration itself. In this
sense, long inactivity periods not only increase
the incubation time but can also indicate a
higher risk of project failure.

In summary, the most critical variables that
impact incubation time and increase project
risks are

■ the period of project inactivity,
■ the engagement of new committers to

achieve critical mass, and
■ the delivery of an early release with

enough technical impact.

Eclipse
We analyzed 23 projects from the Eclipse

Technology project (the incubator). The con-
cept of graduation doesn’t exist in Eclipse;
projects are assessed in the checkpoint review
to decide if they pass to the following phase.

Figure 3a shows the incubation time and
the number of committers registered in each
project’s proposal presentation (creation re-
view). We considered that the incubation pe-
riod started with the creation review; we did-
n’t include the proposal phase because the
preproposal date wasn’t registered. Because
projects must have at least three committers to
be approved, a well-conformed community of-
ten already exists around a project: in our
study, 13 out of 23 projects had more than five
committers, three projects had five commit-
ters, and only five projects had fewer than five
committers. Figure 3b shows a linear regres-
sion curve relating the number of committers
with the time under incubation/validation (de-
grees of freedom = 21, r = 0.410672402, p =
0.10). The correlation between these factors is
significant but not strong. However, these data
are enough to indicate that the incubation/val-
idation phase encourages community growth.
In addition, this enforces the idea of an initial
community size being an important criterion
for project establishment because it has a pos-
itive impact in the early delivery of a first sta-
ble release.

Qualitative analysis
From the information obtained about the

incubation processes, we selected the practices
that showed higher impact on community cre-
ation, growth, and strengthening (see table 1),
especially those aimed at risk mitigation. Note
the following facts:

■ Both approaches differentiate between top-
level projects and subprojects. This is quite
relevant, because it acknowledges that
many F/OSS initiatives are born inside an
already formed community. Moreover, suc-
cessful projects often promote subprojects
that might eventually acquire the status of
top-level projects.

■ Both incubators require candidates to have
a focused set of objectives that must be
formally stated in a proposal. This helps
create healthy communities that aim at
solving specific problems, promoting effec-
tiveness.

■ Both emphasize the importance of the com-
munity for a project’s health by using the
number of committers as a criterion for ap-
proval. This results in long-living projects
that continue to create value even if the ini-
tial set of committers leaves.

■ Both follow an iterative approach during
the incubation phase, reducing the associ-
ated risk to delivering a stable first release.

Despite their similarities, Apache and Eclipse
address the incubation process in slightly differ-
ent ways: Apache has created a specific organi-
zational structure—the Incubator—so its PMC
is dedicated to guaranteeing the candidate proj-
ects’ success (http://incubator.apache.org/official/
resolution.html). Eclipse prefers to incubate new
projects under the structure of an existing top-
level project. The top-level PMC must make a
significant investment in time and energy.

Our proposal
Both communities could improve some of

these processes. Although the Apache incubator
specification defines the concept of project inac-
tivity, which the incubator PMC uses, no clear
criteria exist for declaring a project inactive. In
the Eclipse community, methods for measuring
project activities aren’t clear, so the PMC has
sole responsibility for evaluating periodic re-
views. In this sense, although the EMO ac-
knowledges that the project community’s size is
a key aspect for community health and the pro-
ject’s technical impact, the minimum number of
committers to pass the creation review isn’t
clearly established. Not specifying this number
has the advantage of avoiding a rigid decision-
making process, but some guidelines would help
new projects identify their weak points.

In both cases, the process presents two

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 9 5

main states: the assessment proposal and de-
livery of the first system release. To enable the
adoption of the incubation process in other
communities and organizations, we propose a
high-level process that takes into account the
similarities of the Apache and Eclipse incuba-
tion processes. It consists of two main stages:

■ the launch stage (preproposal and pro-
posal phases), which addresses the defini-
tion of the project scope, an outline of a
high-level architecture, specification of the
project’s main features, identification of
other related projects, and engagement of
the initial committers; and

■ the establishment stage, in which the com-
mitters iteratively add new functionality to
achieve a stable release as soon as possible.
On the basis of parameters such as the
number of committers, reports of activity
on the project-supporting tools, and the
amount and quality of public information,
the project mentor and the PMC should

perform periodic checks on the commu-
nity’s technical advancement and growth.

S ome practices applied in F/OSS com-
munities can be an excellent example
of how to coordinate loosely coupled

teams that are distributed across the globe.
Not all the results of our analysis on the in-

cubators apply to other contexts. For example,
the average number of committers and the av-
erage time of incubation of new projects are
specific values for the communities under study.
Other F/OSS communities handling a smaller
code base, dealing with a smaller set of poten-
tial committers, or targeting a specific technical
domain might show significant differences for
these values—perhaps even failing to conform
to our initial hypothesis (the community’s
growth correlates with technical success). But
even in these other communities, applying incu-
bation mechanisms might help select and
launch new projects successfully.

9 6 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Number of commiters
Time from incubation (months)

(b)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Incubation validation time (months)

5

0

10

15

20

25

30

No
.

of
 c

om
m

itt
er

s

(a)

5

0

10

15

20

25

30

Number of committers
Incubation times (months)

Ne
bu

la

Aj
ax

 A
TF

PH
P

ID
E

TS
F–

Co
ro

na

NA
B

(e
W

id
eS

tu
di

o)

PF
–B

ea
co

n

Da
sh

OH
F

BP
EL

 D
es

ig
ne

r

Ja
va

Se
rv

er
 F

ac
es

EM
FT

ID
E

fo
r L

as
zl

o

EJ
B3

.0
-O

RM
 (D

al
i)

JS
R2

20
-O

RM AL
F

M
DD

i

Ph
ot

ra
n

Bu
ck

m
in

st
er

M
yl

ar

GM
F

Hi
gg

in
s

ET
F

EC
F

eR
CP

5

0

10

15

20

25

30

No
.

of
 c

om
m

itt
er

s

Figure 3. Data from
the Eclipse incubation/
validation phase:
(a) the number of
committers and
incubation time
(months) in projects
in the incubation/
validation phase, and
(b) the regression
curve for committers vs.
time in projects under
incubation/validation.

In terms of software practitioners’ work,
we’ve concluded that launching technically suc-
cessful, long-lived projects requires focused ef-
fort performed by a large enough set of aligned
committers in a short time. Joining a stable com-
munity lets users share code bases, infrastruc-
tures, tools, and processes, and it’s also a good
place to find other developers interested in the
same topics. If a developer is presenting a new
project proposal, it should be done through the
incubator.

But if joining isn’t an option, the project’s ini-
tial community should set as a high priority get-
ting a critical mass following, for example, the
two-phase process we’ve proposed. In this case,
launching the project ideas and code quickly is
important, as is promoting the project in public
forums to gain attention and committers.

In the industrial arena, on the other hand,
the decision process follows different chan-
nels. Typically, many parts of the organization
are involved in the decision, and it usually en-
forces formal risk management policies. In
some sense, industrial organizations already
have their own processes for incubation.

However, in certain situations, some of the
identified F/OSS incubation practices might
contribute to producing better software ele-
ments while reducing the associated risks.
These might include

■ defining project scope early,
■ launching projects after gathering a cer-

tain number of stable committers,
■ exploring similar and related projects be-

fore delivering the first release, and
■ classifying projects on the basis of esti-

mated risk (depending on the differences
in scope with respect to previous ones).

Moreover, adaptations of the incubation
process can be used by companies to promote
bottom-up innovation inside the corporation.
Incubation might provide a framework in
which individuals can contribute their ideas
and gather help and feedback in an informal
way, while at the same time providing a means
for selecting which ideas have enough poten-
tial to be further developed.

The open source communities are in con-

N o v e m b e r / D e c e m b e r 2 0 0 7 I E E E S O F T W A R E 9 7

Table 1
Similarities in Apache and Eclipse incubation processes

The Apache Incubator The Eclipse incubation/validation phase

Incubator ■ The process was formally established in October 2002. ■ The process was formally established in November 2003.
process ■ It’s formally described, with specific stages and activities. ■ It’s formally defined in a legal document at www.eclipse.org/org/
definition ■ The statement for incubation policy, principles, and documents and at the Eclipse Web site.

philosophy are public (http://incubator.apache.org/ ■ The statement of principles is public (www.eclipse.org/projects/
incubation/Incubation_Policy.html). dev_process).

Organizational ■ Roles and responsibilities are clearly defined. ■ Roles and responsibilities are clearly defined.
structure ■ The structure is centralized: the Project Management ■ The structure is centralized: the Technology top-level project PMC

Committee is responsible for administering the Incubator. is responsible for incubated projects.

Risk ■ To graduate from the Incubator, projects require at least ■ Early in the process during creation review, the Eclipse
mitigation four committers. Management Organization assesses the community’s size.
measures ■ Projects can graduate as subprojects or top-level projects. In the proposal phase, the PMC defines ways to participate as

■ Projects follow an iterative approach during the review a top-level project or subproject.
phase to achieve a first stable release. ■ Projects follow an iterative approach during incubation/validation

to achieve a first stable release.

Process ■ Project proposals and board reports are published on the ■ The proposal and creation review are archived and are accessible
information Incubator wiki (http://wiki.apache.org/incubator). from the Eclipse proposal Web site (www.eclipse.org/proposals).
made public ■ Intellectual-property clearance is at http://incubator.apache. ■ Checkpoint reviews are archived and accessible (www.eclipse.org/

org/ip-clearance/index.html. projects/previous-release-reviews.php).
■ Status information of projects under incubation, graduated ■ Reports of periodical project reviews and minutes are published

from incubation, and retired from incubation are at http:// (www.eclipse.org/technology/pmc-minutes.php).
incubator.apache.org/projects/index.html.

Infrastructure ■ Incubator Web site and wikis ■ Project Web site
to support ■ Code repositories ■ Code repositories
project ■ Download sites and distribution-mirroring system ■ Download sites and distribution-mirroring system
development ■ Mail management environment ■ Mail management environment
activities ■ Issue/bug tracking ■ Issue/bug tracking

stant evolution: at the time of this writing, the
Eclipse community is reviewing its incubation
process to make it more agile, Apache is in-
troducing new initiatives trying to foster inno-
vation, and incubation is mandatory in both
communities.

In the future, researchers need to track grad-
uated projects after their first release to analyze
aspects related to evolution, effort, community
evolution, and evolution of the incubation pro-
cess itself.

Acknowledgments
We thank the anonymous reviewers for their in-

sightful comments. Also, thanks to Jesús Bermejo

from Telvent Interactiva for his support in this work,
in the context of the Eureka ITEA COSI project, un-
der a grant from the Spanish Ministerio de Turismo
Industria y Comercio-PROFIT.

References
1. J. Lonchamp, “Open Source Software Development

Process Modeling,” Software Process Modeling, S.T.
Acuña and N. Juristo, eds., Series 10, Springer, 2005,
pp. 29–64.

2. J.O. Gilliam, “Improving the Open Source Software
Model with UML Case Tools,” Linux Gazette, vol. 67,
June 2001.

3. W. Scacchi, “Socio-Technical Interaction Networks in
Free/Open Source Software Development Processes,”
Software Process Modeling, S.T. Acuña and N. Juristo,
eds., Springer, 2005, pp. 1–27.

4. S. Koch, “Evolution of Open Source Software Systems—
A Large-Scale Investigation,” Proc. 1st Int’l Conf. Open
Source Systems, 2005, pp. 148–153; http://oss2005.case.
unibz.it/Resources/Proceedings/OSS2005Proceedings.pdf.

5. A. Capiluppi, P. Lago, and M. Morisio, “Characteristics
of Open Source Projects,” 7th European Conf. Soft-
ware Maintenance and Reengineering, IEEE CS Press,
2003, pp. 317–327.

6. D. Weiss, “Quantitative Analysis of Open Source Projects
on SourceForge,” Proc. 1st Int’l Conf. Open Source Sys-
tems, 2005, pp. 140–147; http://oss2005.case.unibz.it/
Resources/Proceedings/OSS2005Proceedings.pdf.

7. Y. Ye and K. Kishida, “Towards an Understanding of
the Motivation of Open Source Software Developers,”
Proc. 25th Int’l Conf. Software Eng., IEEE CS Press,
2003, pp. 419–429.

8. W. Scacchi, “Understanding Open Source Software Evo-
lution,” Software Evolution and Feedback: Theory and
Practice, N.H. Madhavji, J. Fernandez-Ramil, and D.
Perry, eds., John Wiley & Sons, 2006, pp. 181–206.

9. C. Jensen and W. Scacchi, “Modeling Recruitment and
Role Migration Processes in OSSD Projects,” Proc. 5th
Workshop Software Process Simulation and Modeling
(ICSE-ProSim), 2005; www.ics.uci.edu/%7Ewscacchi/
Papers/New/Jensen-Scacchi-ProSim05.pdf.

10. Y. Liu, E. Stroulia, and H. Erdogmus, “Understanding
the Open-Source Software Development Process: A
Case Study with CVSChecker,” Proc. 1st Int’l Conf.
Open Source Systems, 2005, pp. 154–161; http://
oss2005.case.unibz.it/Resources/Proceedings/
OSS2005Proceedings.pdf.

11. C. Gacek and B. Arief, “The Many Meanings of Open
Source,” IEEE Software, vol. 21, no. 1, 2004, pp. 34–40.

12. B. Fitzgerald, “The Transformation of Open Source
Software,” MIS Quarterly, vol. 30, no. 3, 2006, pp.
587–598.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

9 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

About the Authors

Juan C. Dueñas is a professor in the Telecommunications School at Universidad Politéc-
nica de Madrid. His research interests are in Internet services, service-oriented architectures,
software architecture, and software engineering and evolution. He is a committer of the
Apache Felix project, leader of the OS4OS Spanish community, and promoter of the OSGi Span-
ish user group. He’s also deputy director of the Dept. of Telematics Engineering at UPM and a
member of the IEEE. He received his PhD in telecommunications engineering from UPM. Con-
tact him at Escuela Técnica Superior de Ingenieros de Telecomunicación, Univ. Politécnica de
Madrid, Ciudad Universitaria, E-28040, Madrid, Spain; jcduenas@dit.upm.es; www.dit.upm.
es/jcduenas.

Hugo A. Parada G. is a PhD candidate in the telematics engineering program at UPM.
His research interests include software evolution, distributed software development, and open
source software development. He received his engineering degree in systems from Francisco de
Paula Santander University in Colombia. Contact him at Escuela Técnica Superior de Ingenieros
de Telecomunicación, Univ. Politécnica de Madrid, Ciudad Universitaria, E-28040, Madrid, Spain;
hparada@dit.upm.es; www.dit.upm.es/hparada.

Félix Cuadrado is a PhD candidate and researcher in the telematics engineering pro-
gram at UPM. He’s contributed to several European Eureka-ITEA projects and several Eclipse
projects. His research interests include open source software development and distributed serv-
ices. He received his master of engineering degree in telecommunication from UPM. Contact
him at Escuela Técnica Superior de Ingenieros de Telecomunicación, Univ. Politécnica de Ma-
drid, Ciudad Universitaria, E-28040, Madrid, Spain; fcuadrado@dit.upm.es; www.dit.upm.es/
fcuadrado.

Manuel Santillán is a PhD candidate and researcher in the telematics engineering pro-
gram at UPM, a consultant for the Everis Consulting Company, and a committer in the Apache
Felix project. His research interests include open source software engineering and services mid-
dleware. He received his master of engineering degree in telecommunication from UPM. Con-
tact him at Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica
de Madrid, Ciudad Universitaria, E-28040, Madrid, Spain; santillan@dit.upm.es.

Jose L. Ruiz recently received his PhD in telecommunications engineering at UPM. His re-
search interests include open source software engineering and services middleware. He’s a con-
tributor to several European Eureka-ITEA projects and a committer in the Apache Felix project,
a leader of the OS4OS community, and a promoter of the OSGi Spanish user group. Contact
him at Escuela Técnica Superior de Ingenieros de Telecomunicación, Univ. Politécnica de Ma-
drid, Ciudad Universitaria, E-28040, Madrid, Spain; jlruiz@dit.upm.es; www.dit.upm.es/jlruiz.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

