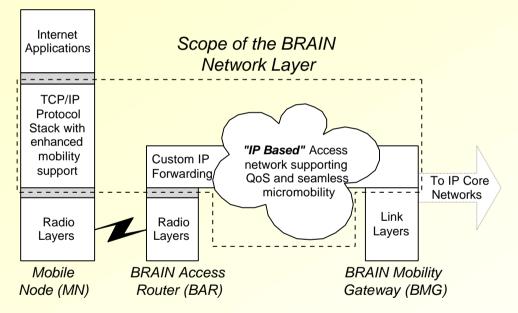
## The Architecture of the BRAIN Network Layer

#### Robert Hancock, Siemens/Roke Manor Research Hamid Aghvami, King's College Markku Kojo, University of Helsinki Mika Liljeberg, Nokia Research Center




File name: brain network layer.ppt Originator: Robert Hancock, SM/RMR Status: Page 1

### **BRAIN at the IST Mobile Summit**

| <b>BRAIN</b><br>overview  | "Broadband radio access for IP-based<br>Networks (BRAIN)"                                                       | Session 1C:<br>4G Networks         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|
| BRAIN<br>services         | <b>"BRENTA - Supporting Mobility and QoS for<br/>Adaptable Multimedia Communication"</b>                        | Session 4B:<br>Mobile Multimedia   |
| BRAIN<br>network<br>layer | "The architecture of the BRAIN Network Layer"                                                                   | Session 5C:Mobile IP               |
|                           | "A first evaluation of IP based network architectures"                                                          | Session 2C:<br>Converged Networks  |
| BRAIN<br>air<br>interface | <b>"BRAIN Enhancements for HIPERLAN/2</b><br>interface Air Interface support QoS in Wireless<br>Communications" | Session 1A:<br>Local Area Networks |
|                           | "First performance Results of BRAIN"                                                                            |                                    |



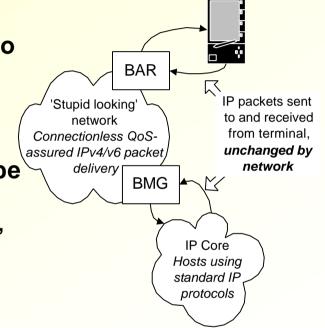
#### **Scope of the BRAIN Network Layer**



- Supporting standard and enhanced applications in the MN (BRENTA)
- Building on any air interface (initially HiperLAN/2)
- Attaching to 'standard' IP fixed core networks ('The Internet')
- In the access network, "Fully IP Based"

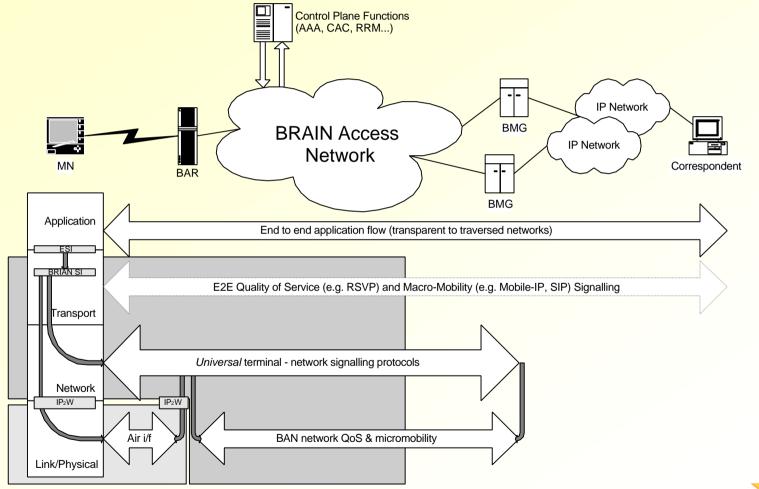
(whatever this means ...) BR




# The Network Layer Problem for BRAIN

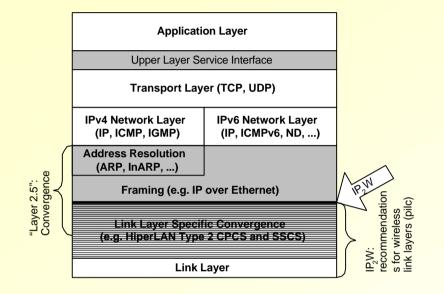
- What it is (within the Access Network):
  - Handover support (fast, smooth, seamless etc. etc.)
  - Quality of Service support
    - Admission control & pre-emption
    - Negotiation with applications
    - (Billable) Guarantees
  - Applicable in public and private environments
- We are looking for self-contained solutions
  - which simplify the mobility problem for other protocols
- What it is not:
  - Yet another set of options for Mobile IP/IPv6




## **Design Principles** (or, What Is "IP-Based?")

- Network Transparency
  - The "End to End Principle" as applied to Mobile Wireless Networks
  - What Goes In, Must Come Out
- Network Independence
  - Support v4/6 & use any subnetwork type
- Obey the Layer Model
  - Keep efficiency without the 'stovepipe' solutions of 2/3G
- Enable & encourage future evolution
  - Means component independence
- Solve only the special problems of Mobile Wireless Access
  - Leave the fixed network to the IETF, and contribute mobile wireless parts there






#### **Key Network Layer Components**



A Z

### **Function Split in the Mobile Node**



|          | Interface           |                    |
|----------|---------------------|--------------------|
|          | Control             | Data               |
| Core     | Configuration       | Error Control      |
|          | Management          |                    |
|          | Address Management  | Buffer Management  |
| Optional | QoS Control         | QoS Support        |
|          | Handover Control    | Segmentation &     |
|          |                     | Reassembly         |
|          | Idle Mode Support   | Header Compression |
|          | Security Management | Multicast          |

File name: brain network layer.ppt Originator: Robert Hancock, SM/RMR

- Preserve layering
  - Allow TCP/IP to be 'wireless/mobile aware'
  - Show how link layer can be 'TCP/IP friendly'
- Be universal
  - IP<sub>2</sub>W everywhere
  - Convergence link specific
- Be efficient
  - Link layer can optimise L3 procedures (move detection, address management ...)



# **Micromobility and Quality of Service**

- Manage fast/smooth handovers within the BAN

   A BAN can be big, and support many radio technologies
- Don't enforce a single macromobility protocol
- Adapt protocols to BAN requirements
  - Common air i/f, transparency, idle mode, scalability...
- (Billable) QoS requires negotiation & CAC
  - At air interface and probably terrestrial side as well
  - Tied to radio resource optimisation & route selection

#### ⇒ If you want QoS, it has to be considered alongside mobility handling within the BAN



## **Next Steps**

- IP2W specification and design
  - 'Encourage' radio WP to design convergence function
- **Determine MN-BAR protocols for µMM & QoS**
- Adaptation and integration of selected BAN μMM & QoS protocol[s]
- Detail security support required in control plane
  - Interface to AAA functions, MN-BAN security requirements for signalling
- Develop framework for integration with radio resource management

