

THE BRAIN QUALITY OF SERVICE ARCHITECTURE FOR ADAPTABLE
SERVICES WITH MOBILITY SUPPORT

Georg Neureiter1, Louise Burness2, Andreas Kassler3, Piyush Khengar4, Ernö Kovacs5,
Davide Mandato5, Jukka Manner6, Tomàs Robles7, Hector Velayos8

1 T -Nova Innovationsgesellschaft GmbH {georg.neureiter@telekom.de}
2 British Telecommunications {louise.burness@bt.com}
3 University of Ulm {kassler@informatik.uni-ulm.de}
4 King's College, London {piyush.khengar@kcl.ac.uk}
5 Sony International (Europe) GmbH {kovacs@sony.de, mandato@sony.de}
6 University of Helsinki {jmanner@cs.helsinki.fi}
7 University of Madrid {robles@dit.upm.es}
8 Agora Systems {hector_velayos@agora-systems.com }

ABSTRACT

Next generation IP networks and applications will have
to address the increasingly important challenges of
wireless access, mobility management, the provision of
quality of service (QoS), and multimedia issues. These
problems form the basis of the research within the EU
financed BRAIN (Broadband Radio Access for IP
based Networks) project. The project is developing a
novel architecture that will be able to deal with the
extreme QoS violations that are likely to occur during a
running session that is exposed to the radio access
environment. The core of this architecture supports
different types of applications. It inherits and develops
from the traditional Internet approach, but incorporates
aspects of a modern flexible QoS middleware solution.

The given problem is addressed in a comprehensive,
modular, and open manner, by providing different
APIs to different types of applications. It provides
powerful functions to application programmers, but
does not assume that lower level functionality must be
hidden from the application programmer. It
encompasses a variety of objects, APIs, end-system
mechanisms and protocols to cope with the dynamic
variation in mobility management and QoS. This
solution will provide applications with more
predictable services and allow applications to react in a
pre-determined way to QoS violations.

INTRODUCTION

This paper presents the BRAIN End Terminal
Architecture (BRENTA), a quality of service
architecture that is designed to provide seamless
service over IP networks with mobility support and
wireless access subnetworks. It is modelled using a top
down approach, by defining likely usage scenarios on

top and deriving the user requirements from them.
Premium services will be available in hot spot areas
with maximum quality. When moving out of those
areas, the user expects a controlled and predictable
degradation of the quality of the service received.
However the user will control this degradation by
specifying a set of high -level QoS parameters for each
service.

These parameters are the main input for the BRAIN
QoS architecture. The architecture specifies how these
parameters are mapped to application and network QoS
parameters, providing end-to-end QoS. To meet the
user’s expectations, cooperation is needed between the
application providing the services and the network
elements, including the mobile terminal.

The proposed architecture does not specify how the
network provides QoS to the data transport, but enables
any combination of IntServ [4], DiffServ [2] or any
other QoS technology like M PLS [15] to be used.
Applications will be able to negotiate network
resources, and will also be able adapt to the resources
available. Several mechanisms already exist for
resource adaptation over fixed networks, and so these
are hereby integrated to facilitate the handling of the
huge variations of resource availability in wireless
networks.

This paper is focused on issues above the transport-
layer. First, the general concepts of BRAIN and its
related works are described, followed by the BRAIN
End Terminal Architecture, BRENTA. BRENTA
supports middleware functionality, which provides
quality of service support for applications. It is an open
component design based on brokers to allow
distributed QoS management. Five application
programming interfaces are specified to allow any kind
of application to receive the desired level of QoS
support from the system.

RELATED WORK

Work on the architecture of systems that provide
quality of service in networks with mobility support, is
still in an embryonic phase. The current work on
different architectures can be divided into two groups:
IETF (Internet Engineering Task Force) registered
proposals (protocols for QoS and mobility support),
and proprietary (typically distributed object based)
proposals.

Within the Internet community, QoS is studied at both
the network/transport layers and the session/application
layers. The session layer protocols such as SIP [3],
RTSP [6] and RTP [7] operate independently from the
network and so are unaffected by mobility supporting
protocols. Such protocol frameworks are currently used
to provide some level of QoS for applications.
However, it is likely that these protocols will find it
difficult to provide the quality of service required for
future interactive multimedia applications in a wireless
mobile environment, where the changes to the network
QoS could be huge. Thus there is a clear requirement
for some form of basic network or transport layer QoS
functionality. As argued in [9] however, this will not
remove the need for session layer quality - rather this
lower layer functionality should be minimized to
prevent unwanted interactions with the application
adaptivity.

At the transport layer, three different architectures
exist. The Differentiated Services [2] architecture is
aiming to deliver scalable service differentiation in the
Internet. This is based on a simple model where traffic
entering a network is classified and possibly
conditioned at the boundaries of the network. The
strengths of the architecture are its simplicity and
excellent scalability. Its weaknesses include its lack of
an associated signalling protocol for admission control
and error reporting. Additionally, it assumes that large
volumes of traffic are aggregated, and it is not clear
how well DS would work at the edge of a resource-
limited network. The Integrated Services architecture
[4] and its associated signalling protocol, RSVP, [5]
provide guaranteed QoS negotiation and reservation for
data flows. The primary drawbacks of this approach
are its lack of scalability, the need to refresh state
regularly using precious wireless bandwidth, the need
to re-negotiate resources as a result of terminal
mobility and the associated problems with mobile IP
tunnels. However, work is ongoing regarding these
issues, for example, a proposal called Mobile RSVP
(MRSVP, [14]) tries to solve the problems of mobility
with RSVP reservations. The Internet Architecture
Board has also noticed the issues related to IntServ and
DiffServ and mobile environments with a new draft
[14]. The third protocol in this family is MPLS [15]. It
combines layer 2 switching with layer 3 routing in a
new fashion, called label switching. Label switching
provides improvements in the packet forwarding
process by simplifying the processing and creating an
environment that can support controlled QoS. The
main implementations nowadays rely on Integrated

Services for label signalling and therefore the
drawbacks mentioned above are also associated with it.

The above protocols (once fully developed) will
provide a means of supporting to some extent, real-
time multimedia applications. However, many feel that
this support is insufficient for many distributed
multimedia systems. One problem is that these often
use a distributed object model of the world [11],
assume an underlying ATM network, or aim to meet
QoS requirements for the terminal rather than the end
user [13]. Another issue is that these applications
require more explicit co-ordination of both the network
and computer resources [8]. A further requirement is to
provide some greater level of programming support to
hide some of the complexity of QoS provision [10]. A
number of architectures have been proposed to address
these problems. Typical weaknesses of these
approaches are a lack of independence from the
networking infrastructure, and conversely, there is also
a tendency not to utilise the functionality provided by
the developing IP based protocols (both networking
and session) - see for example [12] which also includes
a survey of a number of systems. Ideally a QoS
architecture should provide a smooth transition from
the protocol implementations to the distributed objects
through middleware, to give suitable abstractions of the
underlying infrastructure. This is achieved in [11],
where the authors address QoS issues with the
problems of mobility, by using introspection9 to enable
the application to gather information about the
underlying communications link. However, the
solution is solely for CORBA applications, and is yet
to integrate the computer hardware management
functionality.

The approaches mentioned above (e.g. IETF protocol
frameworks) are limited to closed environments. The
BRAIN approach aims to provide a whole design –
able to interchange protocols as required.

THE BRAIN APPLICATIONS

Due to the nature of next generation communication
networks using different kind of wireless access and
added mobility, applications will have to react rapidly
to variations in resource availability. To cope with
temporarily unavailable network resources, multimedia
applications have to be elastic in adapting media
representations without excessively sacrificing the
perceived quality of service.

To address both mobility and QoS issues, two
alternative but complementary architecture solutions
have been identified. The first approach purely
leverages existing protocols and components defined
(or being defined) by the IETF, and tries to provide the
necessary extensions to them. The choice of this
organization is due to the fact the BRAIN architecture

9 The ability of an entity to analyse and understand its own

internal properties and behaviour

is IP-centric and so therefore no modifications of
existing applications are needed. The second approach
presumes instead the availability of some middleware,
which is providing the major functionality for dealing
with mobility and QoS issues, as well as offering
several Application Programming Interface (API)
functionalities for to-be-developed applications. Both
viewpoints are therefore synthesized in a modular
fashion, indicated by different types of application
classes in the architecture.

There are likely to be lots of variations and
developments at the lower levels, and the lower layer
protocols will only provide a certain level of QoS that
needs to be enhanced for many applications. Hence the
need for a middleware layer to provide suitable
abstraction from the networking layers and facilitate
session layer QoS processing.

Mobile terminals moving into regions with low signal
quality or handing-off to new access points, may
violate the QoS contract with the network, which can
cause the frequent dropping of connections. This
requires QoS adaptation and even re-negotiation. It was
always considered that the extension of the QoS
paradigm to the end user would be a hard and complex
task. All these conditions require the applications to be
adaptive in a sense that applications have to react to
varying resource availability inside the network and the
end systems. In order to simplify the programming of
mobile broadband applications and to allow for support
of dynamic QoS changes, these active adaptation
mechanisms should be hidden to application
programmers. The idea of shifting adaptation
mechanisms from the application level to a flexible
middleware featuring QoS functions, will thereby
result in simplified application development for mobile
environments.

The goal of the BRAIN End Terminal Architecture is
to allow any kind of application to get the desired level
of support from the system in other open environments
like the Internet.

Legacy applications (Type A)

Type A applications typically run over standard
TCP/IP (+UDP) stacks and do not address QoS issues,
but can transparently achieve the benefits of QoS
guarantees over wireless links, e.g. through some
configuration tool like a DS marker. These tools can be
accessed through a set of GUIs (each addressing a
given level of user expertise). If no QoS is provisioned,
the given legacy application will still be able to operate
as usual, but without QoS support. An example of such
an application is a commercial, off-the-shelf Web-
browser, where QoS issues span from simply
improving responsiveness in the download of web
pages, to achieving high fidelity multimedia content
delivery.

Self-contained QoS-aware applications (Type B)

Type B applications directly manage QoS and mobility
related functionality, without any external support.

These applications can use various session layer
protocols (e.g. SIP, H.323), and deal with QoS issues
via IntServ and/or DS. Additionally, these applications
will typically include RTP/RTCP/RTSP functionality.
These applications are likely to be specialized
applications, written by skilled application
programmers, who know how to directly deal with
issues like e.g. QoS violations. An example of such
applications would be commercial off-the-shelf and/or
upcoming QoS-enhanced Voice over IP client
applications.

QoS-aware applications based on a component model
(Type C)

Type C applications are able to adapt to QoS violations
by themselves, but can rely on basic lower level
functionality offered by components10. Therefore, the
development of this type of application can be eased
considerably. This is a category of applications not yet
commercially available. Upcoming products will be
based on existing component based platforms, e.g.
Microsoft's DCOM, OMG's CORBA, or Sun's
Enterprise Java Beans.

Support of QoS-aware applicati ons based on external
QoS handling functionality (Type D)

Type D applications typically are not designed to deal
directly with QoS violation issues, though they are
QoS-aware. Therefore these applications need some
form of intelligence, provided by external components
that hide QoS and mobility handling issues from them.
Furthermore, application programmers can even use
high level QoS-languages for the provision of QoS.
This paradigm significantly eases the programming of
distributed multimedia applications, e.g. multimedia
information kiosks that subscribe to an adaptable, QoS
aware video streaming service.

THE PROPOSED BRAIN END TERMINAL
ARCHITECTURE (BRENTA)

In order to support the aforementioned types of
applications, the proposed architecture needs to be
modular, open and configurable/flexible. Modularity
guarantees that existing applications can be
immediately used as is, whereas more complex
middleware solutions can be gracefully introduced
later, as soon as they become available. Openness
further broadens the scope of the proposed architecture,
taking into account interoperability issues with other
architectural solutions (e.g. active networks).
Flexibility is needed to cope with different media types
by, e.g. supporting downloadable codecs. In addition,
the interfaces have to be well defined and standardised
so that QoS enabling components may enhance the
system by downloading them from a server during
runtime.

10 Examples of components are video grabbers, data

compressors, packetizers, etc.

Figure 1: The proposed BRAIN End Terminal Architecture

Applications will interface with a QoS- and mobility-
aware protocol stack through a set of interfaces, each
addressing one of the aforementioned application
types.

Interface Type 0

Legacy applications (like web browsers) access IP
services by directly interacting with the classical
(neither QoS- nor mobility-aware) transport layer
(Application Type A).

Interface Type A

Legacy applications (Application Type A) may
eventually use the services provided by the QoS-
Enabled Transport Interface11, also called the BRAIN
Service Interface (SI). Since most legacy applications
do not feature any QoS support, an optional external
control panel would allow users to configure/setup and
monitor the QoS parameters that this tool12 would
provide.

11 This interface, described as a Service Interface for

openness reasons, may be e.g. socket-based with QoS
support.

12 This tool is an add-on and does not interact with the
application.

Interface Type B

Type B applications can use various session layer
protocols (e.g. SIP, RTP) across this interface. These
protocols may be even partly embedded into the
applications. These applications are directly managing
all the QoS and mobility related issues by themselves.
Nevertheless, these applications (unless otherwise
designed for a specific platform) will not be able to
interact with the resources (e.g. CPU scheduler) in a
coordinated manner.

Interface Type C

Application Type C incorporates the functionality
offered by the so-called component level API. T his
API would provide some specific multimedia
components like frame grabbers, codecs, packetizers,
etc. chained together on a per flow basis, based on the
applications requirements. QoS Broker functionality
built into such applications will manage these chains
and feature QoS- and mobility-awareness, e.g. by being
capable of taking high level decisions, as for what does
adaptation to QoS violations concern.

Interface Type D

This approach is the most sophisticated one. Type D
applications will use an external QoS Broker (either as
a component itself, hidden in the component level API,
or the combination of available interrelated
components, as provided in said API).

Memory

MRC

P
re

se
nt

at
io

n
&

S
es

si
on

 L
ay

er
s

A
pp

lic
at

io
n

La
ye

r

BRAIN QoS Broker

C

B

A

0

D D

C

B

A

0

Legend:
CC Component Coordinator NRB Network Resource Booker
ChC Chain Coordinator (one per flow) PSC Packet Scheduling Controller
NM Network QoS Manager (one per flow) CRC CPU Resource Controller
CM CPU QoS Manager (one per flow) MRC Memory Resource Controller
MM Memory QoS Manager (one per flow) SI BRAIN Service Interface
SM Session Manager

ChC

C
C

Transport Layer
QoS & Mobility Support

PHY

Link Layer (QoS MAC)

IP Layer (QoS & Mobility Support)

QoS enabled Transport Interface (SI)

Session Layer Protocols

BRAIN Component Level API

BRAIN High Level API

Type B
Application

Type C
Application

Type D
Application

BRAIN QoS
Broker GUI

Type A
Application

Data/Networking Plane

S
M

NM

CM

MM

NRB

CPU

CRC

PSC

QoS Management Plane

QoS Management Plane
In order to provide applications with QoS and mobility
support (according to the various types of applications
described above) a set of entities have been identified
below.

Component

A pre-fabricated, customisable software entity
providing meaningful services through a published
interface13. Each component monitors its most
important QoS parameters and implements means for
adaptation.

Chain Coordinator (ChC)

The ChC manages one or many component chains
(each associated with a flow) on behalf of either the
application (Interface C) or an external QoS Broker
(Interface D), in order to guarantee flow
synchronisation within the tolerances requested by the
user. Furthermore, this entity concentrates on QoS
events being generated by the monitors associated with
each component, in order to provide the QoS Broker
with refined and concise information.

Component Coordinator (CC)

Provides applications with a generic framework for
managing software components. More specifically, the
CC deals with component and component -chain
lifecycles (retrieval, deployment, activation,
management, deactivation, and disposal). The retrieval
and deployment phases can even include mechanisms
for selecting and downloading SW components from
remote repositories. To this extent, the CC provides an
abstraction of the physical platform actually used.

QoS Broker

This is the centralized intelligent entity that governs at
the highest level, all the QoS and mobility mechanisms
on behalf of the applications [1] on the terminal device.
This entity ensures that enough resources are available
to accommodate a given applications requirements at
connection establishment time, both locally and
remotely 14. In particular, the QoS Broker maps QoS
parameters across the various components. Afterwards,
during the connection lifetime, the QoS Broker
monitors the connection quality, and reacts to any
degraded conditions (e.g. QoS violations), by
rearranging multimedia component "chains" (through
the CC) and/or performing fine QoS parameter
tuning15. The QoS Broker can be a component by itself
and as such it can be managed through the CC.
Humans through a proper GUI, addressing various

13 Examples of components are third party downloadable

Java-Beans, DCOM-objects, or CORBA-objects.
14 This implies a negotiation process with peer QoS Brokers.

Fallback mechanisms (broker-enabled applications
communicating with other types of applications - like type
A, B, or C) shall be taken into account as well.

15 This may require renegotiations with peer-Brokers.

levels of user expertise can directly access the QoS
Broker.

Resource Managers (NM, CM and MM)

Perform flow control mechanisms (e.g. flow policing,
shaping, coordination, etc.) [1]. Each resource manager
is typically associated with one flow and a specific
type of resource: NM (Network QoS Manager), CM
(CPU QoS Manager) and MM (Memory QoS
Manager). The resource managers can be components,
manageable through the CC.

Session Manager (SM)

This is a software component that abstracts any
session-layer detail, and co-ordinates multiple peer-to-
peer associations within a given session.

Resource Controllers (RC)

These entities represent the finer grained control over
local resources (e.g. the CRC controls the CPU
Scheduler, the MRC controls paging, and the PSC
controls the Network Packet Queue Scheduler, thereby
acting as a service provider for the BRAIN Service
Interface). For each resource there exists exactly one
RC that controls admission for it, manages its
reservation, allows dynamic negotiation for the
resource and performs adaptation. A black box
definition of said RC boxes is hereby proposed, which
specifies a set of interfaces - one for each RC box - in
order to achieve hardware and software platform
independence.

Network Resource Booker (NRB)

Provides QoS provision, like DS and RSVP. A DS
marker can be used to mark packets belonging to a
given flow with each indicating the class of core
network traffic. This would improve the perceived
performance of legacy applications. For example, the
DS marker may mark all IP-packets sent from a
standard Web-browser to indicate low latency traffic
class. This would result in superior web-browsing
performance transparently to the standard browser. In
addition, as an RSVP daemon, the NRB can
analogously be used for setting up network paths with
the required QoS level. The NRB can either be
accessed directly by humans, via a specific GUI, or
programmatically.

CONCLUSION

Within this paper we have presented a QoS architecture
that provides support for adaptable services and
mobility. The QoS architecture is being developed for
the IST project BRAIN, that focuses on broadband
radio access for IP based networks. Nevertheless, a
generic QoS architecture has been provided that may
be used in any networking host by making abstractions
from the underlying network. Clearly, in wireless
environments, the heterogeneity of both the end-
systems and the characteristics of the access network is
an important issue that needs to be addressed. For that,

the concept of adaptable services has been introduced,
which are provided to service consumers of the QoS
architecture. The user may wish to specify preferences
and the system re-acts accordingly. Adaptable services
are supported by components that manipulate streams
at the end-system or inside the network. Whenever
QoS violations occur, the application is informed and
may perform the appropriate actions (eventually
requesting service user assistance). Mobility
management is achieved by the interworking of
adaptable services and specific components of the QoS
architecture. We see the main benefit in providing pre-
fabricated components that handle QoS and mobility,
as well as adaptation mechanisms. The QoS broker
component is placed on top, which co-ordinates and
orchestrates local and remote resources, by using
resource management specific components. In addition
the QoS broker may invoke media scaling/processing
elements in the network (i.e. filters) to adapt media
streams for wireless access network characteristics.

The main design point of the architecture is its
modularity that enables support for all kinds of
application (i.e. legacy as well as special VoIP clients).
This fosters interoperability, fast time-to-market
developments, and a common look-and-feel across
various QoS-related man-machine interfaces.
Therefore, a pure VoIP client (using SIP/RTP) that
manages adaptation and QoS handling via e.g. RSVP,
would be supported. The hereby-proposed architecture
addresses these issues in a comprehensive, modular,
and open manner, by providing different APIs to
different types of application. Interoperability between
applications that use pure IETF approach and
applications that use BRAIN provided components to
manage QoS, mobility and adaptation by themselves,
could be achieved using proxy style techniques.
However, these issues are for future work, as well as
detailed work on the QoS management and QoS
negotiation protocols.

FUTURE WORK

The QoS architecture proposed in this paper will be
integrated into a general architecture for the BRAIN
follow-up network (BRAIN–II). In this architecture,
other services and requirements are under study. When
that work is finished, BRAIN -II will provide a network
for hot -spot areas that includes QoS and mobility
management features. We still see several issues that
are open for future research:

- integration of other requirements such as mobility
and strong security issues. Combination of all the
requirements must be transparent for the
applications;

- dynamic inclusion of ad-hoc networks (e.g.
provided by personal area networks based on
Bluetooth);

- interworking of different access networks based on
self-organisation principles.

In BRAIN-II, practical work will require the creation
of a test bed, where applications and services will be
integrated with real access networks. This will provide
the framework for defining experiments where QoS
solutions will be validated and tuned.

REFERENCE

[1] C. Aurrecoechea, et al. “A Survey of QoS Architectures”,
ACM/Springer Verlag Multimedia Systems Journal, Special
Issue on QoS Architecture, Vol. 6 No.3, pp 138-151, May
1998

[2] The Differentiated Services working group home page:
http://www.ietf.org/html.charters/diffserv-charter.html

[3] The Session initiation protocol working group home page
http://www.ietf.org/html.charters/sip-charter.html

[4] The Integrated services working group home page
http://www.ietf.org/html.charters/intserv-charter.html

[5] The resource reservation protocol working group home page
http://www.ietf.org/html.charters/rsvp-charter.html

[6] Schulzrinne, et al. “Real Time Streaming Protocol”. IETF
RFC 2326, April 1998.

[7] Schulzrinne, et al. "RTP: A Transport protocol for Real—
Time Applications”. IETF RFC 1889, January 1996.

[8] Srivastava, Mishra. "On quality of service in mobile wireless
networks". Proceedings of 7th International Workshop on
Network and Operating System Support for Digital Audio and
Video (NOSSDAV '97), 19-21 May 1997, IEEE, pp 147-58

[9] Noble BD, Satyanarayanan M. “Experience with adaptive
mobile applications in Odyssey" Mobile Networks and
Applications, vol.4, no.4, 1999 pp 245-54

[10] Coulson, et al. "Supporting mobile multimedia applications
through adaptive middleware". IEEE j. selected areas in
communications Vol 7 No 9 Sept 1999

[11] Vandalore, et al. "AQuaFWiN: adaptive QoS framework for
multimedia in wireless networks and its comparison with other
QoS frameworks". Proceedings 24th Conference on Local
Computer Networks. LCN'99, 18-20 Oct. 1999, IEEE
Comput. Soc, pp 88-97

[12] Campbell. "Mobiware: QOS-aware middleware for mobile
multimedia communications". Seventh International
Conference on High Performance Networks (HPN'97), April-2
May 1997, published by Chapman & Hall

[13] Talukdar, A., Badrinath, B., Acharya, A., “MRSVP: A
Reservation Protocol for an Integrated Services Packet
Network with Mobile Hosts”. Technical Report, Rutgers
university, USA, July 1997.

[14] Huston, G. “Next Steps for the IP QoS Architecture”. Internet
Architecture Board, March 2000. (draft -iab-qos-00.txt)

[15] The Multi Protocol Label Switching working group home
page http://www.ietf.org/html.charters/mpls-charter.html

ACKNOWLEDGEMENT

This work has been performed in the framework of the
IST project IST -1999-10050 BRAIN, which is partly
funded by the European Union. The authors would like
to acknowledge the contributions of their colleagues.

