�

Project Number : AC109�
�
Project Title : LEarn from Video Extensive Real Atm Gigabit Experiment (LEVERAGE)�
�
Deliverable Type * : Public�
�

�
�
CEC Deliverable Number : AC109/CSTL/WP4/DS/P/441/b1�
�
Contractual Date of Delivery to the CEC : 30/06/96�
�
Actual Date of Delivery to the CEC : 30/06/96�
�
Title of Deliverable : System Functional Specification of cooperative work services�
�
Workpackage contributing to the Deliverable : WP4�
�
Nature of the Deliverable ** : Specification�
�
Authors : David Fernández (DIT-UPM), Luis Bellido (DIT-UPM)�
�

�
�
Abstract : The co-operative work services that will be developed for the first LEVERAGE trials in Cambridge aim at providing facilities to end-users to work together. These include opening a videoconference session, described in DWP411, sharing applications, using a telepointer, and sharing a blackboard, described in this document under Data Conferencing activity. The resources needed to allow these synchronous co-operative communications between several users are provided by the Multipoint Communications Module, described in the deliverable DWP411, and managed by the Session Management Subsystem. The sessions subsystem makes it possible to create, release, participate in, abandon or destroy a session, and provides the interface for the rest of the system modules to perform this task. The different functionalities of the session subsystem are identified and grouped under four categories: General Sessions Management, Applications Management, Users Management and Resource Registration.

The LEVERAGE Data Conferencing activity deals with the definition and development of the shared applications that will be used during point to point and multipoint co-operative sessions, in order to share documents between participants. The shared applications offer three basic functionalities:

Shared Window, to let users show documents to other participants. Shared Window will be based on WWW. A Netscape web browser will be used as the basic tool.

Telepointer, to let users mark the document being shown on the shared window. Basically a telepointer is an arrow shaped window which appears exactly at the same position on every participants screen. Users can move telepointers to point to some part of a shared documents.

Shared Blackboard, to let users make simple public annotations on the shared window document. Annotations will include basic drawings over the shared document, by hand, rectangles, circles, eraser, etc. �
�
Keyword list : Data Conferencing, Shared Applications, Shared Blackboard, Telepointer, Session Management, co-operative applications, object-oriented

�
�
*Type : P-public, R-restricted, L-Limited, I-Internal�
�
**Nature : P-Prototype, R-Report, S-Specification, R-Tool, O-Other�
�
�
History

Version 1		18/06/96:	Initial version.

�
CONTENTS

� TM \o "1-4" \t "Titre 0;1" �History	� BOUTONATTEINDRE _Toc360589064 � RENVOIPAGE _Toc360589064 �2��

List of figures	� BOUTONATTEINDRE _Toc360589065 � RENVOIPAGE _Toc360589065 �5��

Session Management Subsystem	� BOUTONATTEINDRE _Toc360589066 � RENVOIPAGE _Toc360589066 �6��

1. - SYSTEM OVERVIEW	� BOUTONATTEINDRE _Toc360589067 � RENVOIPAGE _Toc360589067 �7��

1.1 - Aim of the system	� BOUTONATTEINDRE _Toc360589068 � RENVOIPAGE _Toc360589068 �7��

1.2 - General constraints	� BOUTONATTEINDRE _Toc360589069 � RENVOIPAGE _Toc360589069 �7��

2. - FUNCTIONAL DESCRIPTION	� BOUTONATTEINDRE _Toc360589070 � RENVOIPAGE _Toc360589070 �8��

2.1 - Inputs and Outputs	� BOUTONATTEINDRE _Toc360589071 � RENVOIPAGE _Toc360589071 �8��

2.1.1 MCU	� BOUTONATTEINDRE _Toc360589072 � RENVOIPAGE _Toc360589072 �8��

2.1.2 Database	� BOUTONATTEINDRE _Toc360589073 � RENVOIPAGE _Toc360589073 �8��

2.1.3 Statistics	� BOUTONATTEINDRE _Toc360589074 � RENVOIPAGE _Toc360589074 �10��

2.1.4 Session Applications	� BOUTONATTEINDRE _Toc360589075 � RENVOIPAGE _Toc360589075 �10��

2.1.5 User Interface	� BOUTONATTEINDRE _Toc360589076 � RENVOIPAGE _Toc360589076 �10��

2.2 - Functional description of system components	� BOUTONATTEINDRE _Toc360589077 � RENVOIPAGE _Toc360589077 �11��

2.2.1 SMA Objects	� BOUTONATTEINDRE _Toc360589078 � RENVOIPAGE _Toc360589078 �11��

2.2.1.1 General Sessions Management	� BOUTONATTEINDRE _Toc360589079 � RENVOIPAGE _Toc360589079 �12��

2.2.1.2 Applications Management	� BOUTONATTEINDRE _Toc360589080 � RENVOIPAGE _Toc360589080 �12��

2.2.1.3 Users Management	� BOUTONATTEINDRE _Toc360589081 � RENVOIPAGE _Toc360589081 �13��

2.2.1.4 Resource Registration	� BOUTONATTEINDRE _Toc360589082 � RENVOIPAGE _Toc360589082 �13��

2.2.2 Notification of events	� BOUTONATTEINDRE _Toc360589083 � RENVOIPAGE _Toc360589083 �13��

2.2.2.1 General Sessions Management	� BOUTONATTEINDRE _Toc360589084 � RENVOIPAGE _Toc360589084 �13��

2.2.2.2 Applications Management	� BOUTONATTEINDRE _Toc360589085 � RENVOIPAGE _Toc360589085 �14��

2.2.2.3 Users Management	� BOUTONATTEINDRE _Toc360589086 � RENVOIPAGE _Toc360589086 �14��

2.2.2.4 Resource Registration	� BOUTONATTEINDRE _Toc360589087 � RENVOIPAGE _Toc360589087 �14��

3. - ENVIRONMENT DESCRIPTION	� BOUTONATTEINDRE _Toc360589088 � RENVOIPAGE _Toc360589088 �14��

Data Conferencing Activity	� BOUTONATTEINDRE _Toc360589089 � RENVOIPAGE _Toc360589089 �15��

1. - SYSTEM OVERVIEW	� BOUTONATTEINDRE _Toc360589090 � RENVOIPAGE _Toc360589090 �16��

1.1 - Aim of the system	� BOUTONATTEINDRE _Toc360589091 � RENVOIPAGE _Toc360589091 �16��

1.2 - General constraints	� BOUTONATTEINDRE _Toc360589092 � RENVOIPAGE _Toc360589092 �16��

2. - FUNCTIONAL DESCRIPTION	� BOUTONATTEINDRE _Toc360589093 � RENVOIPAGE _Toc360589093 �17��

2.1 - Inputs and Outputs	� BOUTONATTEINDRE _Toc360589094 � RENVOIPAGE _Toc360589094 �17��

2.2 - Functional description of system components	� BOUTONATTEINDRE _Toc360589095 � RENVOIPAGE _Toc360589095 �18��

2.2.1 Shared Window	� BOUTONATTEINDRE _Toc360589096 � RENVOIPAGE _Toc360589096 �18��

2.2.2 Telepointer	� BOUTONATTEINDRE _Toc360589097 � RENVOIPAGE _Toc360589097 �19��

2.2.3 Shared Blackboard	� BOUTONATTEINDRE _Toc360589098 � RENVOIPAGE _Toc360589098 �20��

3. - ENVIRONMENT DESCRIPTION	� BOUTONATTEINDRE _Toc360589099 � RENVOIPAGE _Toc360589099 �21��

� �

List of figures

� TM \c "Figure" �Figure 1: Session Management Subsystem - interfaces	� BOUTONATTEINDRE _Toc360511629 � RENVOIPAGE _Toc360511629 �8��

Figure 2: Session Desktop Interface	� BOUTONATTEINDRE _Toc360511630 � RENVOIPAGE _Toc360511630 �11��

Figure 3: SMA Interface with Session Applications	� BOUTONATTEINDRE _Toc360511631 � RENVOIPAGE _Toc360511631 �11��

Figure 4: SMA Object Hierarchy	� BOUTONATTEINDRE _Toc360511632 � RENVOIPAGE _Toc360511632 �12��

Figure 1: Shared Applications - relations with other modules	� BOUTONATTEINDRE _Toc360511633 � RENVOIPAGE _Toc360511633 �17��

Figure 2: Telepointer	� BOUTONATTEINDRE _Toc360511634 � RENVOIPAGE _Toc360511634 �19��

Figure 3: Shared Blackboard prototype interface	� BOUTONATTEINDRE _Toc360511635 � RENVOIPAGE _Toc360511635 �20��

�

�
Session Management Subsystem

�
- ��SYSTEM OVERVIEW

The LEVERAGE Session Management Subsystem (SMS) manages the set of resources needed to allow synchronous co-operative communication between users. A communication during a session is carried out by two or more users, thus the session sub-system must be prepared to cope with multi-user sessions.

Any co-operative application in LEVERAGE will retrieve or store information concerning the current session using the Session Management Subsystem. This subsystem will also notify events concerning the session to the co-operative applications.

A user interface will show the relevant information concerning the sessions to the users and will permit them to carry out different actions such as joining to a session or creating a new one. This interface the entry point to synchronous communications between the users.

The Session Management Subsystem will follow the client/server architecture. It will include three different modules:

Session Manager (SM). It is in charge of maintaining dynamic information about sessions and logged-on users. It also provides a simple data channel for controlling communications between client SMAs. This is the centralised part of the subsystem that acts as a server for the SMAs. It will reside in a UNIX machine . This SM can be distributed over two or more sites in the final scenario.

Session Manager Agent (SMA). This module is responsible for local session management activities in the users’ workstations. It makes the information maintained by SM available to the rest of client modules and it is also in charge of recording the applications and resources used by the clients during a session in the SM.

Sessions Desktop (SD). It is the user interface which shows the active users and sessions. It gives the users the possibility to create new sessions or join a new one.

- Aim of the system

The sessions subsystem makes it possible to create, release, participate in, abandon or destroy a session, and provides the interface to the rest of the modules of the system to perform this task. The SMA defines this interface, for which the functions can be grouped as follows:

Applications Management. In every workstation the applications being used in a session will use these functions to register themselves as part of the session. Applications in every workstation will be able to consult what applications are registered for every workstation participating in a session. The SMS will also need to launch applications if requested by the user.

Users Management. These functions will be used to provide information concerning the users who are participating in every session, or to permit new users to join a session.

Resource Registration. The resources provided by the Multipoint Communications Module included in the MCU system, channels and tokens, are created, registered and destroyed by means of this set of functions.

General Sessions Management. Besides the functions needed to manage applications, users and resources in a session, general functions for the sessions management are grouped in this category. An example would be a function to create new sessions or to destroy old ones.

- General constraints

The Sessions Management Subsystem only deals with synchronous communications between users. Asynchronous interactions between users are considered in the specifications for the system tools.

When the user is participating in a session, all the information about that session can be cached by the SMA in every workstation. If a user is not in a session, then any information concerning a session has to be requested from the Session Manager, which will result in a poorer performance than in the previous case.

�
 - FUNCTIONAL DESCRIPTION

- Inputs and Outputs

The inputs and outputs of the SMS are depicted in � RENV _Ref360272165 * FUSIONFORMAT �Figure 1�. This section will describe the main interactions between each of the different SMS modules with the entities that are external to the SMS, modules or users.

�

Figure � SEQ Figure * ARABE �1�: Session Management Subsystem - interfaces

MCU

The MCU will provide an SM/MCU interface with four basic functions: CreateToken, DestroyToken, CreateChannel and DestroyChannel. This API will be used by the SM in order to create the resources needed by the applications that use the Resource Registration set of functions.

Database

The SMA will need to retrieve some static information stored in the LEVERAGE Database. As described in the database specification, the interface for accessing this information is ODBC. As far as the SMS is concerned the entities for which information should be stored in the database are:

Group. A set of users, students, who will carry out a task. Groups are defined by the system administrator.

User. People who will use the LEVERAGE sessions sub-system, that is, advisors and students.

Task. Tasks that will be carried out by the groups of students.

Organisation. Each of the organisations that will participate in the trials of the LEVERAGE system, and to which the users belong in a certain manner.

The different attributes of each of the entities are described in tables 1 to 4.

Attribute�
Description�
�
Group Id�
Group identifier (unique)�
�
name�
Name of the group�
�
group access rights�
Access rights for the group. Information on file rights and also rights to create or join sessions, videoconferences, shared windows,…�
�
description�
A link to a long description of the group (HTML page)�
�
current task�
The task id of the current task of the group �
�
advisor�
the advisor of the group �
�
Workspace Id�
the workspace owned by the group to store and retrieve information�
�
Table � SEQ Table * ARABE �1�: Group Attributes

Attribute�
Description�
�
User Id�
User identifier (unique)�
�
password�
Password to verify the identity of a user�
�
name�
name of the user�
�
role�
.the role of the user, it will have, at least two values:

STUDENT

ADVISOR

Any other role will not have access to the sessions in Leverage�
�
access rights�
what things can a user do, including

creation of sessions

access to other users workspace

access to video retrieval, or videoconferences

joining a session�
�
description�
Link to a long and personalised description of the user (HTML page)�
�
Workspace Id�
Workspace of the user�
�
Org Id�
Organisation to which the user belongs�
�
Mailbox Id�
Mailbox of the user�
�
Table � SEQ Table * ARABE �2�: User Attributes

Attribute�
Description�
�
Task Id�
Task identifier (unique)�
�
Task name�
Name of the task�
�
description�
Link to a long description of the task (HTML page)�
�
Table � SEQ Table * ARABE �3�: Task Attributes

Attribute�
Description�
�
Org Id�
Organisation identifier (unique)�
�
Org Name�
Name of the organisation�
�
Country�
Country of the organisation�
�
description�
Link to a long description of the organisation (HTML page)�
�
Table � SEQ Table * ARABE �4�: Organisation Attributes

Statistics

The SMS will provide information to the statistics module concerning the duration of the session for every user. The format and method to provide this information to the statistics module is defined in the Statistics Module specification.

Session Applications

The different applications that are used as part of the session are: the videoconferencing application, the Dataconferencing applications and the exercise application. These applications will interact with the SMS through the SMA API. The SMA API will be based on OLE Automation as the main inter-process communication mechanism.

The SMA API will provide the functionalities presented in section � RENV _Ref360337532 \n �1.1� and it will be further explained in section � RENV _Ref360337595 \n �2.2�.

User Interface

The Session Desktop will provide a GUI to show the active users and sessions in the system. � RENV _Ref360339437 * FUSIONFORMAT �Figure 2� shows a prototype which illustrates what the Session Desktop interface will look like. This interface is based on tree views and lists that make the information concerning sessions and users easily available to the user, by using the mouse. The SD also gives the users the possibility of creating new sessions or joining a new one, by accessing a menu where these actions are offered.. When the user creates a session, s/he will select what users s/he wants to invite to this session. A popup dialogue box will appear in the invited users’ workstations to let the user accept or reject the invitation.

�

Figure � SEQ Figure * ARABE �2�: Session Desktop Interface

 - Functional description of system components

The different functionalities of the SMS are grouped into four categories of functions: Applications Management, Users Management, Resource Registration, and General Sessions Management. The different functionalities are provided to the session applications by the Session Manager Agent (SMA API), whereas some functionalities will be directly available to the users through the Session Desktop application.

The SMA API is an object oriented interface, which provides objects and collections of objects for accessing all the functionalities of the SMA, using OLE Automation. In this sense, the SMA will act as an OLE Automation Server. As can be seen in � RENV _Ref360357849 * FUSIONFORMAT �Figure 3�, it is a bi-directional API, since a path has to be provided from applications in order for the SMA to be notified of session events. The way this notification made will depend on the application. However, an object oriented approach is preferred, that is, use of OLE Automation for notification.

�

Figure � SEQ Figure * ARABE �3�: SMA Interface with Session Applications

In the rest of this section will describe the SMA Objects and how they provide the SMS functionalities to the rest of the applications. Then it will describe the notification of events from the SMA to the applications.

SMA Objects

The basic object hierarchy of the SMA is depicted in � RENV _Ref360353632 * FUSIONFORMAT �Figure 4�. The object Agent is used to access the rest of the objects that are the following:

User. A system user.

Session. A co-operative session established in the system in order to provide the communication resources to a set of users.

Group. A group of users, that will be assigned a task.

Application. It corresponds to an application that is being used in a co-operative session.

Token. It corresponds to the token resource provided by the MCU.

Channel. It corresponds to the channel resource provided by the MCU and used by the applications to communicate with each other.

Note that the plural forms of the objects denote collections or lists of the objects, that is, Users is a collection of objects User. These collections will have at least one Item method and one Count property.

Item. Method that returns an object of the collection. For example, Agent.Users.Item (“lbt”) will return the User whose key is “lbt”.

Count. Property that returns the number of Items in a collection.

�

Figure � SEQ Figure * ARABE �4�: SMA Object Hierarchy

In accordance with the SMA grouping of functionalities, the following is the description of which objects and which methods or properties in every object will provide the required functionality.

General Sessions Management

Current User. The distributed applications need to know who the current user for each workstation is. This is provided in the object Agent.

Agent Object

Property: CurrentUser.

The user who is logged-on in this workstation.

Current Session. The user will have a method to return the current session.

User Object.

Property: Session.

The session in which the user is participating.

Session Token. A general token for a session can be used to provide some floor control policies. The user who grabs the token will assume the role of “controller” for all the co-operative applications.

Session Object.

Method: GrabToken.

Grab the token for this session. The application in the session will be notified when the token is grabbed.

Session Object.

Property: TokenIsMine.

Returns if the token has been grabbed by the current user.

Applications Management

Registering/Unregistering applications in a session. When an application is started during a co-operative session, it must register in the session. This way, the SMS will be able to record which applications are running during a session for each users’ workstation. Before the application closes, it must unregister.

Applications Collection

Method: Register(appkey, appname, notification_object).

Register an application as participating in the session to which this application’s collection belongs. Notification of the session events to the application will start.

The notification_object is as an object exported by the application in order to notify the session events.

Applications Collection

Method: UnRegister (appkey)

Unregister an application that was participating in the session. Notification of the session events to that application will stop.

The notification_object is as an OLE object exported by the application in order to notify the session events.

Users Management

Users in a session and users using an application. Users collections provide a means to access all the users in the session or in an application

Session Object, Application Object

Method: Users

Returns the collection of users in the session or application.

Resource Registration

Tokens and channels used by a distributed application. If the application chooses to use the registration facilities of the SMS for MCU tokens and channels, it will need a method to obtain the token id and the channel id of the registered tokens or channels. If the channel or token an application requests is not registered, it will be created by the SMS using the SM/MCU API.

Application Object

Method: ObtainToken (token_key)

Returns the token object corresponding to an application defined token_key for this session.

Note: the token object has a MCU_token_id as one of its properties.

Application Object

Method: ObtainChannel (channel_key, channel_type)

Returns the channel object corresponding to an application defined token_channel for this session. The channel_type is needed if the SMS has to create the channel through the SM/MCU API.

Note: the channel object has a MCU_channel_id as one of its properties.

Application Object

Method: DisposeToken (token_key)

Informs the SMA that the token is no longer in use. The SMS might destroy the resource if it is not being used by any application.

Application Object

Method: DisposeChannel (channel_key)

Informs the SMA that the channel is no longer in use. The SMS might destroy the resource if it is not being used by any application.

Notification of events

Though the implementation of the session events notification may vary, depending on the application, in this description we assume that the application will export a Notification object that will be accessed by the SMA when an event in the session occurs.

General Sessions Management

Session Token Grabbed. When the session token is grabbed, the applications will be notified.

Notification Object

Method: TokenGrabbed. It is invoked by the SMA to inform that the session token is grabbed.

Applications Management

Launching/closing applications in a session. The SD will provide a user interface to new applications for collaboration in a session or to close applications that are already present in a session. Besides, when a new session is created, some applications for the new session will be launched automatically if the user so requests. For this reason, the SMA will need two functions: StartApp and CloseApp.

StartApp (app_id).

It is used by the SMA to start an application. This function will be provided by the operating system

Notification Object

Method: Close. It is invoked by the SMA to close the application.

Users Management

Users joining/leaving an application. When a remote user opens or closes an application in the session, the SMS will notify this event to the corresponding application for the current user, collaboration in a session or to close applications that are already present in a session. This event is the consequence of the remote Applications.Register or Applications.UnRegister.

Notification Object

Method: UserJoin (user). It is invoked by the SMA when a remote user joins the application.

Notification Object

Method: UserAbandon (user). It is invoked by the SMA when a remote user abandons the application.

Resource Registration

All the events related to the MCU resources will be managed by the MCU system.

- ENVIRONMENT DESCRIPTION

The LEVERAGE Session Manager Subsystem will be distributed between a UNIX server with standard Berkeley sockets, and the users’ workstations, that are PC computers with Windows 95 operating system and a standard WINSOCK compliant TCP/IP stack.

�
Data Conferencing Activity

�
 - ��SYSTEM OVERVIEW

The LEVERAGE Data Conferencing activity in deals with the definition and development of the co-operative applications that will be used during point to point and multipoint sessions in order to share documents between participants. For the first trials, three basic functionalities will be provided: Shared Window, Telepointer and Shared Blackboard.

 - Aim of the system

Co-operative applications will be used to support synchronous collaboration among participants in LEVERAGE sessions. For example, they will be used by students to remotely present the results of a task to other students; or by advisors to discuss and correct documents written by students.

The functionality offered by the co-operative applications described in this document has been defined following the paradigm of a Virtual Meeting Room. The applications presented are supposed to be used jointly with good quality videoconferencing or, at least, audioconferencing facilities. As the main co-ordination between participants in a session will be supported on video and audio channels, as it is done in face to face situations, the co-operative applications will not need to impose strict modes of operation that the users are not accustomed to.

Co-operative applications will try to resemble in some way the behaviour and facilities used in face to face meetings. They provide several possibilities, as follows:

showing documents during the session which are seen by all participants, like a document being shown on a slide projector

marking the document, as if a speaker were using a pen to point to some part of a slide

making annotations on the document, as if the speaker were writing on the slides

having several speakers marking the document at the same time.

Three main functionalities will be provided for the first site trials:

Shared Window, to let users show documents to other participants,

Telepointer, to let users mark the document being shown on the shared window, and

Shared Blackboard, to let users make simple public annotations to the shared window document.

- General constraints

Only one participant at a time will be able to use the Shared Window functionality. Users will have the possibility of asking for the right to control them. On the contrary, each participant will have his own telepointer and could make annotations to the shared window document.

Only documents stored on group or public workspaces can be shown on the shared window. Private documents will have to be copied to group or public workspaces before sharing them. The location of group workspaces needs to be the same from the point of view of any client station (i.e, the same virtual drive and the same directory).

Shared window will have two modes of operation, navigation and annotation mode. When in annotation mode, users will not be able to navigate or change the document shown. They have to change to navigation mode, loosing the annotations made, if not saved to disk.

 - FUNCTIONAL DESCRIPTION

 - Inputs and Outputs

Shared applications inputs and outputs are basically of two types, interactions with other modules and application user interfaces. This section will describe the main interactions for shared applications with other LEVERAGE modules, mentioning the interfaces involved in each case and where they are defined. User interfaces will be described in the next section where the different functionalities provided by applications are described..

� RENV _Ref360113818 * FUSIONFORMAT �Figure 5� represents the main modules and interfaces that shared applications interact with. The following paragraphs will describe briefly all the depicted interactions.

� INCORPORER Word.Picture.6 ���

Figure � SEQ Figure * ARABE �5�: Shared Applications - relations with other modules

Session Manager Agent

Like any other co-operative application in LEVERAGE, shared applications will follow the interface defined within activity 10, Session Management, for communication with the Session Manager Agent (SMA). SMA API is a two-way interface that includes primitives to:

get information about active sessions and participants, called from applications to SMA. Shared applications will use these primitives, for example, to get information about a particular user, about the users participating in the current session, etc.

launch and inform the co-operative applications about events during a session, called from the SMA to applications. Shared applications will be contacted through this interface to be launched at the beginning of a session, to be informed when a user joins or leaves the session, or when the session ends.

The communication between SMA and Shared Applications will make use of OLE Automation as the basic inter-process communication mechanism. The complete SMA API specification can be found in the System Functional Specification of the Session Management document.

Multipoint Communications Module

Shared Applications will make use of services provided by the Multipoint Communications Module included in the MCU system. In particular, shared applications will use:

Data channels, to send and receive data between the different applications running in each participant machine.

Tokens, to control what participant has the right to use the shared window and shared blackboard.

The interface to create and use tokens and data channels is defined in the System Functional Specification of Videoconferencing applications.

Statistics

Shared applications will provide some statistics about their use to the statistics module. Basically, they will provide information about the duration of the data conferencing session and the name of the documents shared during it. The format of statistics messages and the method to provide them to the statistics module are described in System Functional Specification of Statistics Module document.

 - Functional description of system components

Three basic functionalities will be provided by shared applications: Shared Window, Telepointer and Shared Blackboard. All of them are defined in detail within the following sections.

Shared Window

Shared Window functionality will let users show documents to other session participants during a co-operative session. Basically, it will be organised around a window whose content is synchronised between all participants, that is, at a given time, every participant views the same document or part of document on it. Shared Window will be based on WWW; a Netscape web browser will be used as the basic tool, with some extension plug-ins to show other document formats apart from HTML.

It is important to note that, the documents shown on the Shared Window will not be editable. Users will be able to move inside the document, in some cases they will be able to invoke the objects inside it, for example, links or multimedia objects inside and HTML page, but they will not be able to make any changes. However, they will be able to annotate the document (See � RENV _Ref357522113 \n �2.2.3� for more details).

To load a document in the shared window, the user will follow the same steps as when accessing an URL in a Web browser. However, documents must reside on a Web server accessible to every participant, in the group workspace or in the public workspace. Private user documents will have to be previously moved to the group workspace before sharing them.

The formats supported by the shared window will be, at least, the following:

HTML pages, and every other format natively interpreted by Netscape web browser,

Microsoft Word documents,

Microsoft Excel spreadsheets,

Microsoft PowerPoint presentations.

The shared window will not directly support the exercises format. As the exercise module will be designed to be shareable by itself, there is no need to include the exercises format in the shared window.

For the first site trials, the protocol followed to control the shared window will be based on a token called Shared Window Turn (SWT). Only the participant who owns the SWT can load documents on the shared window. Other participants’ browsers will be blocked, to avoid interferences. To control the window, other participants must request the SWT. This request will be transmitted to the participant with the SWT, who will be asked if s/he wants to release it to another participant. S/he can confirm or deny the petition.

By default, the participant who created the session will own the SWT at the beginning of the session.

Apart from this Control by Turns modality, other modalities could be implemented in the future, if found useful. For example:

Free control. Every participant can load documents on the shared window without previously requesting the turn. This modality could be problematic if two or more participants at the same time request to load a document. Depending on the robustness of the implementation, it could put the application into an unstable state. However, taking into account that users will have audio channels for communicating, this modality could be interesting for the system, because it allows a more dynamic co-operation between participants.

A prototype of the user interface for the shared window functionality is presented in � RENV _Ref357531237 * FUSIONFORMAT �Figure 7�. It will basically include:

the Netscape user interface for navigating and loading documents on the shared window, and

an external tools window with buttons to request the SWT and some dialogue windows to ask the user if s/he wants to release the SWT.

Telepointer

The Telepointer functionality will let users mark the documents being shown on the shared window. By means of a telepointer a participant can indicate other users the part of the document s/he is referring to when speaking.

Basically, a telepointer will be a window with an arrow shape that will simulate the functionality of a pointer like the ones used for pointing to blackboards or slide projectors. To move the telepointer the user will have to click the mouse within the telepointer window an drag it to the desired position. The other participants’ telepointers will follow the same path and stop exactly on the same position as the master one.

By double clicking on the telepointer, the user will be able to change some of its parameters, orientation, size, colour, shape, etc. � RENV _Ref357527329 * FUSIONFORMAT �Figure 6� shows shapes and sizes included in the first prototype, as well as the dialogue window for changing telepointer parameters.

�

Figure � SEQ Figure * ARABE �6�: Telepointer

For the first site trials, each user will have his/her own telepointer. To use the telepointer, the user will have to click on the telepointer button in the tools window (see � RENV _Ref357531237 * FUSIONFORMAT �Figure 7�) and the telepointer window will appear locally on his/her screen and in other participants’ screens. To differentiate between participants, each telepointer will have a different colour or a little tag with the name of the participant. To finish using the telepointer, the user will have to click again on the telepointer button in the tools window

The telepointer position will be relative to screen co-ordinates. In order to guarantee coherency between participants, the shared window position and size will be exactly the same on every participant’s screen.

Shared Blackboard

The shared blackboard functionality will let the users make annotations over the documents shown on the shared window or over a blank page. When a user wants to annotate a document, s/he just has to choose from a set of typical drawing tools, freehand drawing, text, line, circles, rectangles, eraser, etc., accessible in the tools window. Annotations made by one participant will be simultaneously seen by other participants in the co-operative session. All participants will be able to simultaneously annotate on the shared window.

In order to make annotations, the user with the SWT has to click on the Annotations Button to change to annotation mode. Once in annotation mode, the shared window is frozen and no navigation is possible. To continue navigation, the user with the SWT will have to exit from the annotation mode. The telepointer can be normally used in annotation mode.

� RENV _Ref357531237 * FUSIONFORMAT �Figure 7� shows a prototype interface for the shared blackboard. The figure distinguishes: (1) the controls to change to annotation mode and manage the telepointer; (2) the toolbox with the different tools to make annotations; (3) the telepointer window; and (4) some annotations made over the document shown.

� INCORPORER Word.Picture.6 ���

Figure � SEQ Figure * ARABE �7�: Shared Blackboard prototype interface

It is important to note that, annotating a document does not mean editing it. If a user wants to make any changes to a document s/he has to start the corresponding application, edit and save the document and load it again on the shared window. In fact, this is, more or less, the way it is done in a face to face meeting. Somebody takes notes about the modifications to be made. Afterwards, s/he edits the document and later sends modified copies to participants.

Users will have the possibility to save annotations to disk. The basic formats used to save them will be the Windows Bitmaps (BMP).

�
 - ENVIRONMENT DESCRIPTION

Leverage shared applications will run over PC computers with a Windows 95 operating system, a standard WINSOCK compliant TCP/IP stack and Netscape 2.0, or later version, web browser. The Netscape browser will be configured with special plug-ins able to interpret the different document formats supported by LEVERAGE.

Shared applications do not impose a heavy load on the CPU or network. However a minimum configuration of a Pentium 100 with 16 Mbytes of memory is required. Also, a fast graphic card with TrueColor is recommended.

AC109/CSTL/WP4/DS/P/441/a1		SFS of co-operative work services

�

�PAGE �1�

�PAGE �1�

�

Copyright © 1996 by the LEVERAGE consortium

�

Copyright © 1996 by the LEVERAGE consortium

AC109/CSTL/WP4/DS/P/441/b1		SFS of co-operative work services

�

�PAGE �14�

�PAGE �7�

�

Copyright © 1996 by the LEVERAGE consortium

�

Copyright © 1996 by the LEVERAGE consortium

