AC109/UPM/WP4/DS/P/442/b1

Specification of Cooperative Work Services for two sites trials

 [image: image1.wmf]
Project Number : AC109

Project Title : LEarn from Video Extensive Real Atm Gigabit Experiment (LEVERAGE)

Deliverable Type * : Public

CEC Deliverable Number : AC109/UPM/WP4/DS/P/442/b1

Contractual Date of Delivery to the CEC : 30/4/97

Actual Date of Delivery to the CEC : 30/4/97

Title of Deliverable : Specification of Cooperative Work Services for two sites trials

Workpackage contributing to the Deliverable : WP4

Nature of the Deliverable ** : Specification

Authors : David Fernández (DIT-UPM), Luis Bellido (DIT-UPM)

Abstract :

This document includes the functional specifications of two LEVERAGE application subsystems:

· Session Management Subsystem, which deals with the management of cooperative sessions and all the resources used during synchronous cooperative communications, and

· Data Conferencing Applications, which cope with the definition and development of the shared applications that will be used during point to point and multipoint cooperative sessions in order to share documents between participants.

Starting from the specifications and implementations used during the first LEVERAGE trials carried out in Cambridge, and taking into account the feedback gained on it, these subsystems have been redefined and adapted to the new two-sites scenario that will be used for the second trials between the CULC and INT institutions.

Keyword list : Session Management, cooperative applications, object-oriented, Data Conferencing, Shared Applications, Shared Blackboard, Telepointer, Text sharing

*Type : P-public, R-restricted, L-Limited, I-Internal

**Nature : P-Prototype, R-Report, S-Specification, R-Tool, O-Other

History

Version 1

29/04/97:
Initial version.

CONTENTS

1

History

List of figures
4

1. SESSION MANAGEMENT SYSTEM
5

1.1 - SYSTEM OVERVIEW
5

1.1.1 - Aim of the system
6

1.1.2 - General constraints
6

1.2 - FUNCTIONAL DESCRIPTION
7

1.2.1 - Inputs and Outputs
7

1.2.1.1 MCU
7

1.2.1.2 Database
7

1.2.1.3 Statistics
8

1.2.1.4 Applications
9

1.2.1.5 User Interface
9

1.2.2 - Functional description of system components
10

1.2.2.1 SMA Objects
11

1.3 - ENVIRONMENT DESCRIPTION
14

2. DATA CONFERENCING APPLICATIONS
15

2.1 - SYSTEM OVERVIEW
15

2.1.1 - Aim of the system
15

2.1.2 - General constraints
15

2.2 - FUNCTIONAL DESCRIPTION
16

2.2.1 - Inputs and Outputs
16

2.2.1.1 Session Manager Agent
16

2.2.1.2 Multipoint Communications Module
16

2.2.1.3 Statistics
17

2.2.2 - Functional description of system components
17

2.2.2.1 Shared Window
17

2.2.2.2 Telepointer
18

2.2.2.3 Shared Blackboard
19

2.2.2.4 Text Sharing
20

2.3 - ENVIRONMENT DESCRIPTION
21

Appendix I
22

1. Session Management Agent Access API
22

1.1 - SMA Access API
22

1.1.1 Registration Phase
23

1.1.2 InSession Phase
24

1.1.3 Disconnection Phase
24

1.2 - Ole Automation Interface
25

1.2.1 SMA Objects Definition
25

1.2.2 Applications Notify Object
26

1.3 - Function Based Interface
27

1.3.1 Data Types:
27

1.3.2 Functions
28

1.3.2.1 Initialization
28

1.3.2.2 Information about Users
28

1.3.2.3 Information about Sessions
28

1.3.2.4 Information about Groups
28

1.3.2.5 Information about Applications
28

1.3.2.6 Registration
29

1.3.2.7 Tokens and Data Channels
29

1.3.3 Events
29

List of figures

6

Figure 1: Distributed Session Management Architecture

Figure 2: Session Management Subsystem - interfaces
7

Figure 3: Session Desktop Interface
9

Figure 4 : Create a new session dialog box
10

Figure 5: SMA Interface with Session Applications
10

Figure 6: SMA Object Hierarchy
11

Figure 7: Shared Applications - relations with other modules
16

Figure 8: Weboard Application in navigation mode
18

Figure 9: Telepointer
19

Figure 10: Shared Blackboard prototype interface
20

SESSION MANAGEMENT SYSTEM

1.1 -

SYSTEM OVERVIEW

Synchronous communication between users in the Leverage system is organized around the concept of cooperative sessions. A session involves two or more users which interact by means of certain cooperative applications like videoconference or dataconference.

The Distributed Session Management Subsystem (DSMS) described in this document is in charge of managing the set of resources needed to allow the synchronous cooperative communication between the users. Leverage cooperative applications will be launched and coordinated by DSMS; they will retrieve or store information concerning the current session using the services offered by the DSMS, and they will also be notified by DSMS of any important events during the session.

A user interface will show the relevant information about the sessions to the users and will permit different actions such as joining a session or creating a new one as this interface is the entry point for synchronous communication between users.

As the communication in a Leverage session can be carried out by two or more users located on the same or different sites, the session sub-system must be prepared to cope with multi-user and multi-site sessions.

For the first Leverage trials, carried out over one site, Session Management functionality was mainly located in a single computer server. However, for the second and third trials, two or three sites will be involved, thus allowing the creation of sessions between participants at different sites. In this case, several servers will be involved, and the management of session information must be coordinated between them.

DSMS has been designed starting from the SMS used for the Cambridge trials. One of the main objectives pursued in the redesign was to maintain as much as possible the interface offered to the user to create, join or leave cooperative sessions. Therefore, most of the modifications necessary to cope with the management of distributed sessions have been included in the server parts of session subsystem in order to make management transparent to the users as well as to the client modules.

Figure 1 shows Distributed Session Manager System architecture. It follows the client/server architecture which includes the servers distributed over all the connected sites. We can distinguish four different modules in it:

· Distributed Session Manager (DSM). This is in charge of maintaining the dynamic information about the sessions and logged-on users in a distributed scenario. DSM also offers a simple data channel for controlling communications between client modules. DSM is made up of the Site Session Managers which are running on every site participating in the Leverage system.

· Site Session Manager (SSM). This is the part of DSM which is located in a site server. It manages the dynamic information about users connected to a particular site as well as information about sessions in which a local user is involved. Besides, it is in charge of broadcasting information about local users and sessions to other SSMs. It acts as a server for the SMAs, and resides in a UNIX machine.

· Session Manager Agent (SMA). This module is responsible for local session management activities in the users’ workstations. It makes the information maintained by DSM available to the rest of client modules and it is also in charge of registering in DSM the applications and resources used by the clients in a session. SMA communicates directly with the SSM on its site.

· Sessions Desktop (SD). This is the user interface showing the active users and sessions. It gives the users the possibility of creating new sessions or of joining a new one.

[image: image2.wmf]Site 1

sma

SMA

SMA

Site 2

SMA

sma

SMA

Site 3

SSM

SSM

SSM

SSM

SSM

SSM

Distributed SM

SMA

SD

App1

App2

WS1

WS2

WS3

WS4

WS5

Figure 1: Distributed Session Management Architecture

1.1.1 - Aim of the system

The Distributed Session Management Subsystem allows the creation, the release, the participation, the abandoning or destruction of a session, and provides an interface for the rest of the modules running on workstations to perform this task. This interface is offered by the SMA and used by both cooperative applications and the Session Desktop. Its functions can be grouped as follows:

· Applications Management. Cooperative applications are launched at every workstation by the SMA and they use these functions to register themselves as part of the session. Applications also use these functions to consult what applications are registered for every other workstation participating in a session.

· Users Management. These functions are used for information about the users who are participating in every session, or to permit new users to join a session.

· Resource Registration. The resources provided by the Multipoint Communications Module included in the MCU system (channels and tokens) are created, registered and destroyed by means of this set of functions.

· General Sessions Management. Besides the functions needed to manage applications, users and resources in a session, general functions for the sessions management are grouped in this category. An example would be a function to create new sessions or to destroy old ones.

1.1.2 - General constraints

The Sessions Management Subsystem only deals with the synchronous communication between users. The asynchronous interaction between users is not considered in this document.

The interconnection between SSMs at different sites will not be permanent, due to the restrictions of the ATM network. Dynamic connection and disconnection of SSMs has to be permitted to have enough flexibility in the system. (Otherwise a system operator would have to ‘reboot’ the SSM of each site and reconfigure it every time there is a connection or disconnection). Taking into account the interaction and coordination between DSMS and MCU subsystems, this is also an important issue to be considered in MCU design.

The SSMs will manage their own network channels for interconnection and will not be dependent on the MCU for that purpose. That is, SSMs will not use MCU MCS connections to transfer its own protocol. This independence will facilitate the development of the different pieces of the LEVERAGE system and will not be an obstacle to the integration of the system.

Users of the Leverage system will belong to a single site and will not be able to join the system from a site different from the one where they are registered.

1.2 - FUNCTIONAL DESCRIPTION

1.2.1 - Inputs and Outputs

The inputs and outputs of the DSMS are depicted in Figure 2. In this section we will describe the main interactions of each of the different DSMS modules with the entities that are external to the SMS (modules or users).

Figure 2: Session Management Subsystem - interfaces

1.2.1.1 MCU

Each SSM will interact with the local MCU module running on its site. For that purpose, MCU provides an SSM/MCU interface based on simple textual messages sent over a TCP socket with primitives to allocate and deallocate domains (AllocateDomain, DeallocateDomain) and to create and destroy MCS resources (CreateToken, DestroyToken, CreateChannel and DestroyChannel). This API will be used by SSM to create the resources needed by the applications that use the Resource Registration set of functions.

SSM/MCU interface is described in detail in the SFS document of the Multipoint Control Unit.

1.2.1.2 Database

The SMA retrieves static information about users and groups registered in the Leverage Administrative Database. As it is described in the database specification, the interface to access this information is based on a local Windows Dynamic Library (DLL) named DBDLL, which accesses the Server Database through ODBC.

The entities whose information should be stored in the database as far as the DSMS is concerned are:

· Group. A set of users that will carry out a task. Groups are defined by the administrator of the system.

· User. People who will use the sessions sub-system of Leverage, that is, advisors and students.

· Organization. Each of the organizations that will participate in the trials of the Leverage system, and to which the users belong in a certain manner.

The different attributes the session subsystem needs for each of the previous entities are described in tables 1 to 3.

Attribute
Description

Group ID
Group identifier (unique)

Key
Short name of the group

Name
Description of the group

Group Workspace
The workspace owned by the group for storing and retrieving information

Table 1: Group Attributes

Attribute
Description

User ID
User identifier (unique)

Password
Password to verify the identity of a user

Key
Login name of the user

Name
Full name of the user

Role
The role of the user: STUDENT or ADVISOR

Group ID
Identifier of the Group the user belongs to

Workspace
Personal workspace of the user

Organization ID
Identifier of the organization to which the user belongs

Server ID
Identifier of the server the user is registered in

Table 2: User Attributes

Attribute
Description

Org ID
Organization identifier (unique)

Org Key
Short name for the organization

Org Name
Description of the organization

Table 3: Organization Attributes

The interface to access the Database DLL (DBDLL) is described in detail in the SFS document of Administration and System Tools.

1.2.1.3 Statistics

The SMS provides information to the statistics module about the duration of the session for every user. The exact format and method for giving this information to the statistics module is defined in the Statistics Module specification.

1.2.1.4 Applications

Cooperative applications interact with the DSMS through the SMA API introduced in section 1.1. The SMA API is based on OLE Automation, which is a standard inter-process communication mechanism in MS-Windows operating systems. Applications will access all the information about a session through a hierarchy of OLE objects maintained by the SMA.

The SMA API will provide the functionality presented in section 1.1.1. This will be further explained in section 1.2.2. In addition, a detailed description of SMA API can be found in Appendix I of this document.

1.2.1.5 User Interface

The Session Desktop will provide a GUI to show the active users and sessions in the system. Figure 3 shows a final prototype of this interface.

Figure 3: Session Desktop Interface

Once the SD is launched, it shows all the active sessions in the system, either local to the site or remote. The information is organized in a tree-like way: each session being a leaf of the tree which, by means of a double click, can be expanded to show the list of users and applications (see Figure 3).

SD includes a menu bar with five main buttons to:

· Create a new session. In this case a new dialog box appears (Figure 4) to show the users the different options s/he has when creating a session: the list of users to invite, the applications that will initially be used, the session description and the type of session (private or public). The color of the icons representing the users in the tree reflect their status: green means the user is connected; yellow means the server where the user resides is connected but not the user; and red means that there is no access to the server where the user is registered.

All the users invited to a session will receive an invitation to join the session and will be able to accept or refuse it.

· Join an active session. The user can join a session by selecting it on the Sessions in course tree and clicking on the join button. Immediately after joining the session, the applications currently in use inside the session will be launched locally. Users can join public sessions at any moment. Private sessions can only be accessed by an explicit invitation from the creator at the beginning of the session or from any other participant later. Sessions are public by default.

· Abandon a session. This button allows the user to leave the session in which s/he is participating. Sessions are lapsed when the last participant abandons it.

· Add an application to a session. In case any participant wants to add a new application to a session, s/he can do it with this option.

· Invite a user to a session. In case any participant wants to invite a new user who was not invited when the session was created, s/he can do it with this option.

Two additional buttons on the menu bar provide access to help and copyright information.

Figure 4 : Create a new session dialog box

1.2.2 - Functional description of system components

As described in previous sections, the different functions of the DSMS are grouped into four categories of functions: Applications Management, Users Management, Resource Registration, and General Sessions Management. Different functions are provided to the session applications by the Session Manager Agent (SMA API), whereas some additional functionality will be directly available to the users through the Session Desktop application.

The SMA API is an object-oriented interface which provides objects and collections of objects in order to access all the functions of the SMA by using OLE Automation. In this sense, the SMA will act as an OLE Automation Server. As can be seen in Figure 5 it is a bi-directional API, since a way has to be provided from applications in order to allow the SMA to receive notification of session events. That means that applications will behave also as OLE Automation Servers for the notification of events.

Although the core of SMA API is based in OLE Automation, to ease the access to SMA from applications written in languages that do not include high level support for OLE Automation or no support at all, a second function-based interface will be offered. This new interface will reside in a dynamic link library (DLL) and will notify of events via Windows’ messages.

[image: image3.wmf]Session

Manager Agent

(SMA)

Session

Manager Agent

(SMA)

Session

Applications

Application

Notification of session events

Access to SMA Objects

Client

Client

Server

Server

Figure 5: SMA Interface with Session Applications

In the rest of this section we will describe the SMA Objects and how they furnish SMS functions to the rest of the applications, and then we will describe the notification of events from the SMA to the applications. In Appendix 1, we have included a detailed document describing the SMA API interface from the programming point of view.

1.2.2.1 SMA Objects

The basic object hierarchy of the SMA is depicted in Figure 6. The object Agent is used to access the rest of the following objects:

· User. A user of the system.

· Session. A cooperative session established in the system in order to provide the communication resources to a set of users.

· Group. A group of users, that will be assigned a task.

· Application. This corresponds to an application that is being used in a cooperative session.

· Token. This corresponds to the token resource provided by the MCU.

· Channel. This corresponds to the channel resource provided by the MCU and used by the applications to communicate with each other.

Note that the plural forms of the objects denote collections or lists of the objects, that is, Users is a collection of objects User. These collections will have at least an Item method and an Count property.

· Item. Method that returns an object of the collection. For example, Agent.Users.Item (“lbt”) will return the User whose key is “lbt”.

· Count. Property that returns the number of Items in a collection.

Figure 6: SMA Object Hierarchy

Following the grouping of functions of the SMA, the following is the description of what objects and what methods or properties in every object will provide the required functionality.

1.2.2.1.1 General Sessions Management

Current User. The distributed applications need to know what is the current user for each workstation. This is provided in the object Agent.

Agent Object

Property: CurrentUser.

The user who is logged-on at this workstation.

Current Session. The user will have a method to return the current session.

User Object.

Property: Session.

The session in which the user is participating.

Session Token. A general token for a session can be used to provide some floor control policies. The user who grabs the token will assume the role of the “controller” of all the co-operative applications.

Session Object.

Method: GrabToken.

Grab the token for this session. The application in the session will be notified when the token is grabbed.

Session Object.

Property: TokenIsMine.

Returns if the token has been grabbed by the current user.

1.2.2.1.2 Applications Management

Registering/Unregistering applications in a session. When an application is started during a co-operative session, it must registered in the session. This way, the SMS will be able to transmit what applications are running in a session for every users’ workstation. Before the application closes, it must unregister.

Applications Collection

Method: Register(appkey, appname, notification_object).

Register an application as participating in the session to which this applications collection belongs. The notification of the session events to the application will start.

The notification_object is as an object exported by the application in order to notify it of the session events.

Applications Collection

Method: UnRegister (appkey)

Unregister an application that was participating in the session. The notification of the session events to that application will stop.

The notification_object is as an OLE object exported by the application in order to notify it of the session events.

1.2.2.1.3 Users Management

Users in a session and users using an application. Users collections provide a way to access all the users in the session or in an application

Session Object, Application Object

Method: Users

Returns the collection of users in the session or application.

1.2.2.1.4 Resource Registration

Tokens and channels used by a distributed application. If the application chooses to use the registration facilities of the SMS for MCU tokens and channels, it will need a method to obtain the token ID and the channel ID of the registered tokens or channels. If the channel or token an application requests is not registered, it will be created by the SMS using the SM/MCU API.

Application Object

Method: ObtainToken (token_key)

Returns the token object corresponding to an application defined token_key for this session.

Note: the token object has a MCU_token_ID as one of its properties.

Application Object

Method: ObtainChannel (channel_key)

Returns the channel object corresponding to an application defined token_channel for this session. The channel_type is needed if the SMS has to create the channel through the SM/MCU API.

Note: the channel object has a MCU_channel_ID as one of its properties.

Application Object

Method: DisposeToken (token_key)

Informs the SMA that the token is not used anymore. The SMS might destroy the resource if it is not used by any application.

Application Object

Method: DisposeChannel (channel_key)

Informs the SMA that the channel is not used anymore. The SMS might destroy the resource if it is not used by any application.

1.2.2.1.5 Notification of events

Though the implementation of the session events notification may vary depending on the application, in this description we assume that the application will export a Notification object that will be accessed by the SMA when an event in the session occurs.

1.2.2.1.6 General Sessions Management

Session Token Grabbed. When the session token is grabbed, the applications will be notified.

Notification Object
Method: TokenGrabbed. This is invoked by the SMA to inform that the session token is grabbed.

1.2.2.1.7 Applications Management

Launching/closing applications in a session. The SD will provide a user interface to new applications for collaboration in a session or in order to close applications that are already present in a session. Besides, when a new session is created, some applications for the new session will be launched automatically if the user requests so. For this reason, the SMA will need two functions: StartApp and CloseApp.

StartApp (app_id).

This is used by the SMA to start an application. This function will be provided by the operating system

Notification Object
Method: Close. This is invoked by the SMA to close the application.

1.2.2.1.8 Users Management

Users joining/leaving an application. When a remote user opens or closes an application in the session, the SMS will notify for the current user of this event to the corresponding application either to collaborate in a session or to close applications that are already present in a session. This event is the consequence of the remote Applications.Register or Applications.UnRegister.

Notification Object
Method: UserJoin (user). This is invoked by the SMA when a remote user joins the application.

Notification Object
Method: UserAbandon (user). This is invoked by the SMA when a remote user abandons the application.

1.2.2.1.9 Resource Registration

All the events related to the MCU resources will be managed by the MCU system.

1.3 - ENVIRONMENT DESCRIPTION

Leverage Session Manager Subsystem will be distributed between several UNIX servers with standard Berkeley sockets, and the users’ workstations, that are PC-computers with a Windows 95 operating system and a standard WINSOCK compliant TCP/IP stack. Server and clients will be interconnected by a TCP/IP network.
DATA CONFERENCING APPLICATIONS
1.4 -

SYSTEM OVERVIEW

Data Conferencing activity in Leverage copes with the definition and development of the cooperative applications that will be used during point to point and multipoint sessions in order to share documents between participants. For the first trials, three basic functions will be offered: Shared Window, Telepointer and Shared Blackboard, all of them included in an application named Weboard. For the second trials, a new application will be added to share simple text documents.
1.4.1 - Aim of the system

Cooperative applications will be used to support synchronous collaboration among participants in Leverage sessions. For example, they will be used by students to present the result of a task to other students remotely; or by advisors to discuss and correct documents written by students.

The functionality offered by the cooperative applications described in this document has been defined following the paradigm of a Virtual Meeting Room. The applications presented are supposed to be used jointly with good quality videoconferencing or, at least, audioconferencing facilities. As the main coordination between participants in a session will be held on video and audio channels, as it is done in face to face situations, the cooperative applications will not need to impose strict modes of operation that the users are not accustomed to using.

Cooperative applications will try to resemble in some way the behavior and facilities we use in face to face meetings. Possibilities such as the following are offerd:

· showing documents which can be seen by all the participants during the session, as if a document were shown on a slide projector

· marking the document, as if the speaker was using a pen to point to some part of a slide

· making annotations on the document, as if the speaker were writing on the slides

· having several speakers marking the document at the same time.

Three main functions were offered for the first site trials:

· Shared Window, to let users show documents to other participants,

· Telepointer, to let users mark the document being shown on the shared window, and

· Shared Blackboard, to let users make simple public annotations to the shared window document.

All of these functions were grouped in an application named Weboard. For the second trials, a new application requested by WP2 has been added. The basic functionality offered by this application will be:

· Text Sharing, to allow users to see and edit simple texts in a cooperative way.

The second Leverage trials will be carried out over a two-sites scenario. However, as the main changes due to the distribution of session management and MCU functionality have been design in such a way that they are transparent to applications, there will not be important modifications to be made to existing applications.

1.4.2 - General constraints

Only one participant at a time will be able to use Shared Window and Shared Text functionality. Users will have the possibility of asking for the right to control them. On the contrary, each participant will have his own Telepointer and can make annotations to the shared window document.

Only documents stored on group or public workspaces can be shown on the shared window. Private documents will have to be copied to group or public workspaces before being shared. The location of group workspaces needs to be the same from the point of view of any client station (i.e, the same virtual drive and the same directory).

Shared window will have two modes of operation: navigation and annotation mode. When in annotation mode, users will not be able to navigate or change the document shown. They have to change to navigation mode, losing (if not saved to disk) the annotations made.

1.5 - FUNCTIONAL DESCRIPTION

1.5.1 - Inputs and Outputs

Shared applications inputs and outputs are basically of two types: interactions with other modules and application-user interfaces. In this section we will describe the main interactions of shared applications with other Leverage modules, mentioning the interfaces involved in each case and where they are defined. User interfaces will be described in next section, while we are describing the different functions offered by applications.

Figure 7 represents the main modules and interfaces that shared applications interact with. In the following paragraphs we will describe briefly all the interactions depicted.

Figure 7: Shared Applications - relations with other modules

1.5.1.1 Session Manager Agent

As any other cooperative application in Leverage, shared applications will follow the interface defined within activity 8 (Session Management) for communication with the Session Manager Agent (SMA). SMA API is a two way interface that includes primitives to:

· get information about active sessions and participants (called from applications to SMA). Shared applications will use this primitives, for example, to get information about a particular user, or about the users participating in the current session, etc.

· launch and inform the cooperative applications about events during a session (called up from SMA to applications). Shared applications will be contacted through this interface to be launched at the beginning of a session, to be informed when a user joins or leaves the session, or when the session ends.

The communication between SMA and Shared Applications will make use of OLE Automation as the basic inter-process communication mechanism. The complete SMA API specification can be found in Appendix I of this document.

1.5.1.2 Multipoint Communications Module

Shared Applications will make use of services provided by the Multipoint Communications Module included in the MCU system. In particular, shared applications will be used:

· Data channels, to send and receive data between the different applications running on each participant’s machine.

· Tokens, to control which participant has the right to use the shared window and shared text tools.

The interface to create and use tokens and data channels is already defined in the System Functional Specification of Videoconferencing applications.

1.5.1.3 Statistics

Although in principle shared applications do not provide statistics about their use, in case it is needed in the future, they will provide such statistics to the statistics module using the standard interface based on CLF messages and defined in System Functional Specification of the Statistics Module document.

1.5.2 - Functional description of system components

Four basic functions will be offered by the shared applications: Shared Window, Telepointer, Shared Blackboard and Shared Text. All of them are defined in detail within the following sections.

1.5.2.1 Shared Window

Shared Window functionality lets users show documents to other session participants during a cooperative session. Basically, it is organized around a window whose content is synchronized among all the participants, that is, at a given time, every participant will view the same document or part of a document on it. Shared Window will be based on WWW; in particular, a Netscape web browser with some extensions plug-ins to show other document formats apart from HTML will be used as the basic tool.

It is important to note that, the documents shown on the Shared Window will not be editable. Users will be able to move inside the document, in some cases they will be able to invoke the objects inside it (for example, links or internal multimedia objects and HTML pages), but they will not be able to make any changes on it (however, they will be able to annotate the document; see 2.2.2.3 for more details).

To load a document in the shared window, the user will follow the same steps as when accessing a URL in a Web browser. However, shareable documents must reside on:

· a Web server accessible by every participant,

· in the group workspace, or

· in the public workspace.

Private user documents will have to previously be moved to the group workspace before sharing them.
At the least, the formats supported by the shared window will be the following:

· HTML pages, and every other format natively interpreted by Netscape web browser,

· Microsoft PowerPoint presentations.
The protocol followed to control the shared window will be based on a token named Shared Window Turn (SWT). Only the participant who owns the SWT can load documents on the shared window. User input to other participants’ browsers will be blocked. To control the window, other participants must request the SWT. This request will be transmitted to the participant with the SWT, who will be asked if s/he wants to release it to another participant. S/he can confirm or refuse the petition.

By default, the participant who created the session will own the SWT at the beginning of the session.

Apart from this Control by Turns modality, other modalities could be implemented in the future, if found useful. For example:

· Free control. Every participant can load documents on the shared window without previously requesting the turn. This modality could be problematic if two or more participants request the load of a document at the same time. Depending on the robustness of the implementation, it could bring the application to an inconsistent state. However, taking into account that users will have audio channels to communicate, this modality could be interesting for the system, because it allows more dynamic cooperation between participants.
The user interface for the shared window functionality is presented in Figure 2. It basically consists of:

· a Netscape window for navigating and loading documents on the shared window, and

· an external Tools window with buttons to request the SWT, to change to annotation mode, to unlock Netscape window and exit.

Figure 8: Weboard Application in navigation mode

1.5.2.2 Telepointer

Telepointer functionality will let users mark the documents being shown on the shared window. By means of a telepointer a participant could indicate to the other users a part of the document s/he is referring to when speaking.

Basically, a telepointer will be a window with an arrow shape that will simulate the functionality of a pointer like the ones used for pointing to blackboards or slide projections. To move the telepointer the user will have to click the mouse within the telepointer window and drag it to the desired position. Other participants’ telepointers will follow the same path and stop exactly on the same position as the master one.

By double clicking on the telepointer, the user will be able to change some of its parameters: orientation, size, color, shape, etc. Figure 9 shows shapes and sizes included in the first prototype, as well as the dialogue window to change telepointer parameters.

[image: image4.png]
Figure 9: Telepointer

For the first site trials, each user will have his/her own telepointer. To use the telepointer, the user will have to click on the telepointer button in the tools window (see Figure 2) and the telepointer window will appear locally on his/her screen and on other participants’ screens. To differentiate between participants, each telepointer will have a different color or a little tag with the name of the participant. To finish using the telepointer, the user will have to click again on the telepointer button on the tools window

The position of the Telepointer will be relative to screen coordinates. In order to guarantee the coherence between participants, the shared window position and size is synchronized to be exactly the same on every participants’ screen.

1.5.2.3 Shared Blackboard

Shared blackboard functionality lets the users make annotations on the documents shown on the shared window or on a blank page. When a user wants to annotate a document, s/he just has to choose from a set of typical drawing tools (freehand drawing, text, line, circles, rectangles, eraser, etc.) accessible in the tools window. Annotations made by one participant are simultaneously seen by other participants in the cooperative session. All participants will be able to annotate simultaneously on the shared window.

In order to make annotations, the user with the SWT has to click on the Annotations Button to change to annotation mode. Once in annotation mode, the shared window is frozen and no navigation is possible. To continue navigation, the user with the SWT will have to exit from annotation mode. Telepointers can normally be used in annotation mode.

Figure 10 shows the user interface of Weboard in annotations mode (shared blackboard). In the figure we can distinguish the toolbox with the different tools to make annotations and some annotations made over the document shown.

Figure 10: Shared Blackboard prototype interface

It is important to note that, annotating a document does not mean editing it. If a user wants to make any change to a document s/he has to start the corresponding application, edit and save the document and load it again on the shared window. In fact, that is, more or less, the way we do it in classical meetings: somebody takes notes about the modifications to be done; and, afterwards, s/he edits the document. S/he later sends modified copies to participants.

Users will have the possibility to save annotations to the disk. The basic formats used to save them will be the Windows Bitmaps (BMP).

More information about Weboard application and the functionality described here can be found in the Weboard’s Online Help from the first trials version.

1.5.2.4 Text Sharing

Text Sharing functionality will be included in a new application independent of the Weboard. Basically, it will let users share text files in a very simple way. As Weboard, this fuctionality will consist of a Shared Text Window, that will show the same text in every participants’ screen; and a Tools Window, with some options to control it.

The Shared Text Window will be a simple text editor, similar to Windows Notepad, which is controlled by only one user at a time, who can: create a new text file, load a text from a disk file, modify the existing text, or save it in a disk file. Other participants can ask for the right to control the editor by clicking on a button and the "master" will be asked if s/he wants to release the turn, just in the same way as it is done in Weboard application.

The format of the text to be shared is very simple: neither different fonts nor different font sizes will be permitted. Besides, no use of telepointers over the shared editor will be made. Typical clipboard functions (cut, copy and paste) will be available.

1.6 - ENVIRONMENT DESCRIPTION

Leverage shared applications will run over PC computers with a Windows 95 operating system, a standard WINSOCK compliant TCP/IP stack and Netscape 2.0 (or later) web browser. Netscape browsers will be configured with special plug-ins which are able to interpret the different document formats supported in Leverage.

Shared applications do not impose high load to CPU or network; however, a minimum configuration of a Pentium 100 with 16 Mbytes of memory is required. In addition, a fast graphics card with TrueColor is recommended.

Appendix I

2. Session Management Agent Access API

This chapter describes the application programming interface used to communicate between the Session Management Agent (SMA) and the cooperative applications in LEVERAGE workstations. This description is a refinement of the functional description provided in the SFS document about Cooperative Applications [1].

LEVERAGE cooperative applications can use any of the two programming interfaces SMA offers. The first is an object-oriented interface and is based on OLE Automation. This interface should be used by applications written in Visual Basic or Delphi languages, which offer a high level of support for OLE Automation. The second is a classical function-based interface that should be used by applications written in Visual C++ or other languages with low level OLE Automation support.

The document is organized as follows: In the first section, the protocol followed by applications and SMA to communicate between them is described. In section 4.2 and 4.3, the OLE Automation and function-based interfaces are presented respectively.

2.1 - SMA Access API

Three basic functions are covered by SMA API:

· The registration of applications in the SMA, which mainly includes the launching of applications inside a session and the storage in the SMA of information about the applications that are running.

· The access to the information about the current session. Applications can consult the list of users in a session, the list of active sessions, the data about a particular user, etc.

· The communication of session events to the applications. Typical events are: a new user joining the application, a user that abandons the application or the end of a session.

This section describes the protocol that applications must follow to communicate with SMA. The two subsequent sections will show the specific details about how the protocol is implemented in the two different interfaces provided.

Three phases compose the SMA-applications protocol: Registration Phase, InSession Phase and Disconnection Phase. The next three subsections will describe each of them.

Registration Phase

SMA

Application

After the user joins a session, the SMA launches the applications chosen for that session, either by a WinExec call:

 WinExec (application + parameters)

 application: EXE file of the application, which

 is stored in Windows Registry

 parameters: <sesid> <appid> <public/private>

 <ptop/mp> <owner/not-owner>

or by means of OLE Automation if the application supports it:

 CreateOleObject (“Appname.Notify”)

The application starts and initializes the communication with SMA:

· Creating the sma.Agent OLE object, in case of OLE interface, or

· Calling Initialize, in case of function based interface.

SMA registers the new application and informs other participants (through SM) of the event. After that, it sends a RegistrationConfirm to the application.

In case of any problem registering the application the SMA will send a RegistrationDeny event.

Then, the application registers itself on the SMA by invoking OleRegister (in case it uses OLE Automation interface) or MsgRegister (in case it uses function-based interface) methods.

Register primitives are asynchronous: the control is immediately returned to the calling program and the result will be sent back later as an event.

After receiving the RegistrationConfirm, the application can use the primitives to consult information (users, groups, sessions, etc).

SMA sends the application: as many UserJoins events as users are already joined to that application. Note: it also sends a UserJoins event for the current user of the application.

The parameters passed to the application when it is started by means of a WinExec call are given in ASCII format and separated by single blanks. They are the following:

· <sesid>: identifier of the session (integer in ascii format)

· <apid>: identifier of the application (integer in ascii format)

· <public/private>: public or private, identifies the type of session (string)

· <ptop/mp>: for point-to-point sessions or multipoint sessions (string)

· <owner/not-owner>: owner means that the session was created by the current user of the workstation (string)

2.1.1 InSession Phase

SMA

Application

When a new user joins the application or someone leaves it, a UserJoins or UserLeaves event is sent to the application.

The application can :

· Consult the information about current session .

· Obtain and Dispose Tokens.

· Obtain and Dispose Channels.

by using the corresponding primitives.

2.1.2 Disconnection Phase

SMA

Application

When the session ends, the SMA sends a SessionEnd event to the application.

After receiving the SessionEnd event, the application must unregister:

· In case of OLE interface, it must call OLEUnRegister and release the sma.Agent OLE object.

· In the case of function-based interface, it must call MsgUnRegister and Finish functions.

After that, the application can continue running in stand alone mode or end.

The SMA unregisters the application and informs other users about it.

Before explaining in detail the programming interfaces which implement the previous protocol, it is important to keep some points in mind:

· As the information stored in the SMA is dynamic, some means have to be provided to avoid inconsistencies when consulting it. For example, a typical query will be to consult all the users in the session. If during the consultation a user joins or leaves the application, some inconsistencies could arise.

To solve this problem, a Win32 critical section (mutex) is used. Before accessing the information, the applications must own the mutex to guaranty that the information will not change during the query, and release it afterwards.

It is important to note that, during the time an application is querying the SMA, the information about the session is not updated. So, applications must try to minimize the time they are inside the critical section.

As we will see, when using OLE Automation interface, the applications must get the mutex (by calling to WaitForSingleObject) explicitly. When using the function-based interface, this is done internally by the DLL.

· This first version of the SMA-API interface restricts the information available to applications to the scope of the current session. That means that an application can not get, for example, the information about users or applications in other sessions. If this functionality is needed, it could be implemented in future versions.

2.2 - Ole Automation Interface

To access the OLE Automation SMA interface, the applications must create a new object of type sma.Agent and access the methods and properties it exports. Typical sentences to create this object are :

· In Delphi:

 var Agent : Variant;

 Agent := CreateOleObject (‘sma.Agent’);

· In Visual Basic:

 dim Agent as Object

 set Agent = CreateObject (“sma.Agent”);

2.2.1 SMA Objects Definition

These are the method and properties exported by SMA objects:

const

 UNDEFINED_ROLE = 0;

 STUDENT_ROLE = 1;

 ADVISOR_ROLE = 2;

 NO_STATUS = 0;

 NOTLOGGEDON_STATUS = 1;

 LOGGEDON_STATUS = 2;

 INSESSION_STATUS = 3;

TAgent = class(TAutoObject)

 property Sessions: Variant;

 property Users: Variant;

 property Groups: Variant;

 property CurrentUser: Variant;

 end;

TUser = class(TAutoObject)

 property Id : longint;

 property Key : String;

 property Name : String;

 property Status : Longint;

 property Role : Longint;

 property Group : Variant;

 property Session : Variant;

 property Organization : String;

 property IPAddress : String;

 function InAnySession : wordbool;

 property MCSUserId[appid : integer] : Longint;

 // UserId provided by MCS

 end;

TUsers = class(TAutoObject)

 property Count: Longint;

 property Item[key: Variant]: Variant;

 property ItemById[Id : longint]: Variant;

 end;

TSession = class(TAutoObject)

 property Id : longint;

 property Name : String;

 property Users : Variant;

 property Applications : Variant;

 property MCUAddress: String;

 procedure GrabSessionFloor;

 function SessionFloorIsMine: wordbool;

 end;

TSessions = class(TAutoObject)

 property Count: Longint;

 property Item[pos: longint]: Variant;

 property ItemById[Id: longint]: Variant;

 end;

TGroup = class(TAutoObject)

 property Id : longint;

 property Key : String;

 property Name : String;

 property Users : Variant;

 end;

TGroups = class(TAutoObject)

 property Count: Longint;

 property Item[key : Variant]: Variant;

 property ItemById[Id: longint]: Variant;

 end;

TApplication = class(TAutoObject)

 property Id : longint;

 property Name : String;

 property Users : Variant;

 property NotifyObj : variant;

 function ObtainToken (token_key: string):longint;

 function ObtainChannel (channel_key: string;

 channel_type: longint) : longint;

 procedure DisposeToken (token_key: string);

 procedure DisposeChannel (channel_key: string);

 end;

TApplications = class(TAutoObject)

 property Count: Longint;

 property Item[pos: longint]: Variant;

 property ItemById[Id: longint]: Variant;

 function OLERegister (appid : longint;

 NotifyObj: Variant): Variant;

 procedure OLEUnRegister (appid: longint);

 function MsgRegister (appid : integer;

 hwnd:longint; wmsg: longint): Variant;

 procedure MsgUnRegister (appid : integer);

 end;

2.2.2 Applications Notify Object

When an application registers in the SMA by means of the OLERegister method, it must provide an OLE Automation notification object which exports the following methods:

TNotify = class(TAutoObject)

 property Key: string;

 procedure RegistrationConfirm;

 procedure RegistrationDeny;

 procedure UserJoins (user: variant);

 procedure UserLeaves (user: variant);

 procedure SessionFloorGrabbed;

 procedure SessionEnd;

 end;

The methods of this object are called by the SMA when the event they represent happens. It is important to reduce to the minimum the processing inside this methods, to avoid blocking the SMA. Typically, an application should just store the event in a local variable, exit from the method and process the event afterwards.

2.3 - Function Based Interface

The function based interface is implemented by means of a Windows Dynamic Link Library (SMA.DLL) written in Delphi which internally makes use of the OLE Automation interface. It exports all the functions and types necessary to access the same information that is accessible through OLE interface.

2.3.1 Data Types:

The following data types are used to collect the information coming from SMA. This definition is provided in C.

typedef char TName[41];

typedef char TKey[9];

typedef char TIPAddress[16];

struct TUser {

int32

Id;

TKey

Key;

TName

Name;

int32

Role;

int32

Status;

int32

Group_id;

int32

Session_id;

TName

Organization;

TIPAddress
IPAddress;

};

struct TUsers {

int32

Count;

TUser

List[MAX_USERS];

};

struct TSession {

int32

Id;

Tname

Name;

};

struct TSessions {

int32

Count;

Tsession
List[MAX_SESSIONS];

};

struct
TGroup {

int32

Id;

TKey

Key;

TName

Name;

};

struct TGroups {

int32

Count;

TGroup
List[MAX_GROUPS];

};

struct TApp {

int32

Id;

TName

Name;

};

struct TApps {

int32

Count;

TApp

List[MAX_APPS];

};

2.3.2 Functions

The following function are exported by the DLL:

2.3.2.1 Initialization

procedure Initialize;

{ To initialize the SMA.DLL. Must be called before any other}

Procedure Finish;

{ To end up with SMA.DLL }

2.3.2.2 Information about Users

function GetUserById (user_id: longint; var user : TUser) : longint;

function GetUserByKey (user_key: PChar ; var user : TUser) : longint;

function GetCurrentUser (var user : Tuser) : longint;

function GetUsersInAGroup (group_id: longint ;var user :TUser) :longint;;

function GetUsersInASession (session_id: longint;

 var users : TUsers): longint;

 { It returns the list of users joined to a session. It can only

 be used for the current session }

function GetUsersInAnApp (app_id: longint; session_id: longint;

 var users : TUsers) : longint;

 { It returns the list of users joined to an application. It

 can only be used for the current session }

2.3.2.3 Information about Sessions

function GetSessionsList (var sessions : Tsessions) : longint;

 { It returns the list of active sessions in LEVERAGE system }

function GetSessionById (session_id: longint ;

 var session : Tsession) : longint;

2.3.2.4 Information about Groups

function GetGroupsList (var groups : TGroups) : longint;

function GetGroupByKey (group_key: PChar; var group: TGroup) : longint;

2.3.2.5 Information about Applications

function GetApps (session_id: longint ; var apps : Tapps) : longint;

 { It returns the list of applications being used in a session.

 It can only be used for the current session }

function GetAppById(app_id: longint; session_id:longint ;

 var app : Tapp) : longint;

2.3.2.6 Registration

procedure MsgRegister (app_Id: longint; sess_Id: longint;

 hwnd: longint; wmsg: longint);

 { Registers an application in SMA. The SMA will notify the

 events by sending a Windows message with code wmsg to the hwnd window }

procedure MsgUnRegister (app_Id: longint; sess_Id: longint);

 { Unregisters an application in SMA }

2.3.2.7 Tokens and Data Channels

function ObtainTokenId (app_Id: longint; session_id: longint ;

 tk_key: Tkey): longint;

 { Returns the identifier of the token whose key is tk_key }

procedure DisposeToken (app_Id: longint; session_id: longint;

 tk_key: Tkey);

function ObtainChannelId (app_Id: longint; session_id: longint;

 channel_key: TKey ; channel_type : longint): longint;

{ Returns the identifier of the channel whose key is channel_key }

procedure DisposeChannel (app_Id: longint; session_id: longint;

 channel_key: Tkey);

procedure GrabSessionFloor (session_id : longint) : longint;

 { Asks for the session floor }

function SessionFloorIsMine (session_id : longint) : boolean;

 { Tells if the session floor is owned by our user }

2.3.3 Events

The following events can be received by applications by means of a window message to the window specified if MsgRegister is used either via the OLE Interface or the function inteface. The event is notified in the parameter wParam of the Windows message. The following are the values associated with each event::

wParam
lParam

USER_JOINS = 1
<user-id>

USER_LEAVES = 2
<user-id>

REG_CONFIRM = 3
0

REG_DENY = 4
0

SES_FLOOR_GRABBED = 5
0

SES_END = 6
0

SES_FLOOR_LOST = 7
0

Copyright © 1997 by the LEVERAGE consortium:

8
29

Copyright © 1997 by the LEVERAGE consortium:

_922700998.doc
�

�

_923847122.doc
� INCRUSTAR Word.Picture.6 ���

_923858741.doc
��������

Tools

Window

Telepointers

Shared Window

�

_922707169.doc
�

_923847117.doc
�������

Tools

Window

Annotations

�

_922654495.doc
���
Session

Manager

(SSM)

Site

Applications

To Other
SSM’s

Session

Manager Agent

(SMA)

Session

Manager Agent

(SMA)

Session

Manager

(SM)

MCU

MCU

Session

Desktop

(SD)

Session

Desktop

(SD)

Database

Database

Session

Applications

CLF Msgs

SM/SMA

API

SM/MCU

API

SMA/SD

API

SD GUI

SMA API

Statistics

Statistics

DB API

_922692663.doc
�

Agent

User

Session

Group

Users

Sessions

Groups

Applications

Application

Tokens

Token

Channels

Channel

