
   

  

   

   
 

   

   

 

   

   168 Int. J. Web and Grid Services, Vol. 10, Nos. 2/3, 2014    
  

   Copyright © 2014 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Resolving coordination challenges in distributed 
mobile service executions 

Ramón Alcarria*, Tomás Robles,  
Augusto Morales and Edwin Cedeño 
Department of Telematic Systems Engineering, 
Technical University of Madrid, 
28040 Madrid, Spain 
Email: ralcarria@dit.upm.es 
Email: trobles@dit.upm.es 
Email: amorales@dit.upm.es 
Email: edwinc@dit.upm.es 
*Corresponding author 

Abstract: The internet of things enables environments where objects are fully 
interconnected, allowing the execution of smart services and the consumption 
of functionalities provided by surrounding objects. This loose-coupled object 
interconnection demands improvements in the control and data planes for an 
optimum coordination between distributed services in mobile devices. There 
are several coordination challenges in these environments related to the 
interaction between services through communication channels, the support of 
node and link disconnections and the transmission of events at runtime. This 
paper defines a coordination model and proposes solutions to these challenges 
by developing a cooperative service execution model for mobile environments, 
integrating the publish/subscribe paradigm for communicating event messages 
and improving its performance by using a gossip-based solution. Subsequently, 
we evaluate this model and analyse the improvements of the designed 
optimisation mechanisms over the message queue telemetry transport protocol 
and the ns-3 network simulator. 

Keywords: service coordination; internet of things; workflow patterns; 
publish-subscribe; gossip. 

Reference to this paper should be made as follows: Alcarria, R., Robles, T., 
Morales, A. and Cedeño, E. (2014) ‘Resolving coordination challenges in 
distributed mobile service executions’, Int. J. Web and Grid Services, Vol. 10, 
Nos. 2/3, pp.168–191. 

Biographical notes: Ramón Alcarria currently is an Assistant Professor at the 
E.T.S.I Topography in the Technical University of Madrid while he finishes his 
PhD studies. He received his MS degree in Telecommunication Engineering 
from the Technical University of Madrid in 2008. His research interests are 
service architectures, sensor networks, service composition and prosumer 
environments. He is a member of IEEE, IEEE Communication Society and ACM. 

Tomás Robles is an Associate Professor of Telematics Engineering at the 
E.T.S.I. Telecommunication in the Technical University of Madrid since 1991. 
He received an MS and PhD degrees in Telecommunication Engineering from 
Technical University of Madrid in 1987 and 1991, respectively. His research 
interest is focused on advanced applications and services for broadband 
networks, both wired and wireless networks. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 169    
 

    
 
 

   

   
 

   

   

 

   

       
 

Augusto Morales received his Bachelor’s degree in Electronic Engineering in 
2007 from the University of Panama and his Master’s degree in Computer 
Systems Engineering from the Technical University of Madrid in 2010. Since 
2008 he has been working in several areas related mobile publish/subscribe 
systems, service architectures, and network security while he pursues his PhD. 
He holds several IT certifications such as CEH, Security+, Linux+ and CCSE. 

Edwin Cedeño received his Bachelor’s degree in 1997 from the Technological 
University of Panama and Master’s degree in Computer Science (2009), 
Network and Communications (2009), and Distributed Systems Engineering 
(2011), from the Metropolitan University of Science and Technology of 
Panama, Technological University of Panama and Technical University of 
Madrid, respectively. Since 2001 he is a professor of Telematics Engineering at 
the University of Panama. Currently, he continues his studies as a PhD student 
at Technical University of Madrid. 

This paper is a revised and expanded version of a paper entitled ‘Resolving 
coordination challenges in cooperative mobile services’ presented at the 
‘International Conference on Innovative Mobile and Internet Services in 
Ubiquitous Computing (IMIS)’, Palermo, Italy, 4 July 2012. 

 

1 Introduction 

The Internet of Things (IoT) envisions a world in which all objects are interconnected 
and interact. The emergence of the Web of Things (WoT) inspires these heterogeneous 
objects to be accessible in the digital world. The convergence at the network level should 
also be applied to the service level, where the infrastructure has to provide appropriate 
abstractions to describe objects by the functionality or the information they provide. This 
evolution reflects the current user behaviour, which is primarily interested in real-world 
entities (e.g. things, places, and people) and their high-level states (e.g. empty, free, and 
walking) rather than in individual sensors and their raw output data. 

Data-driven services allow these digital objects to interact and interchange data, in 
order to be processed (e.g. transformed, filtered, merged, used). Grid and web services 
provide an abstraction to access these processes through well-defined interfaces and 
allow data-driven services to be designed as workflows that capture the invocation logic. 

The communication between elements from the WoT is often delegated to orchestration 
processes using WS-BPEL (Web Service Business Process Execution Language) (Khalaf 
et al., 2007) for information control. To focus more into complex coordination between 
entities or devices, a distributed model based on choreography is needed. Moreover, an 
execution model in which the services are fully specified before runtime is less desirable 
than the ability of services to interact by sending events and operations in a choreography 
model. Users can appear and disappear, they may also require the same service with 
different properties, for example in a QoS-based service provision such as in the work of 
Wang et al. (2010), while services are being executed so, services must adapt to these 
situations. Thus, using a choreography-based model for managing distributed service 
coordination introduces the challenge of an emergent behaviour of the services. 

In order to decouple executing services and, thus, avoid coordination problems  
when services experiment an emergent behaviour, this paper defines a service model 
based on an event-driven approach, consisting of interaction between services, sending 



   

 

   

   
 

   

   

 

   

   170 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

notifications on state changes, which are initiated either by user actions on the user 
interface or by requests from other services. This approach combines the advantages of 
the control-driven workflow execution (which allows the development of more complex 
services and more control in the management of these services by the execution 
environment) and the data-driven approach (which handles the content exchange between 
activities), since it enables the possibility for events to contain service data. This is 
critical for services accessing the IoT to share content with the so-called web objects, 
such as databases, restful web services, or even in external services domains and clouds 
(Anjum et al., 2012). 

We consider a mobile distributed service execution scenario which enables inter-
organisational collaboration and interoperability of heterogeneous hardware. The services 
described in this paper are executed in mobile and fixed terminals in a distributed way, 
since the ubiquitous access to the functionality of the IoT and WoT objects (which 
support standard application layer protocols and techniques, such as HTTP or REST) is 
decoupled from the invocation control in workflow diagrams, as described by WS-BPEL 
and Service Component Architecture (SCA). Due to natural mobility characteristics of 
execution devices, which often suffer from problems related to lack of connectivity (lack 
of coverage or low battery), operations such as, device disconnections and reconnections 
or the addition and removal of workflow participants are required to be managed. 

In this work, we define a cooperative service model for resolving coordination 
problems in mobile service executions. We also propose an underlying communication 
model based on the publish/subscribe paradigm (Eugster et al., 2003) and an algorithm 
optimisation of a gossip protocol to alleviate the consequences of the mobile nature of 
service executions, resulting in the problems stated in the previous paragraph. 

Regarding coordination problems, we propose solutions to the identification of each 
element participating in the service interaction, the correlation between execution 
instances and the communication between processes composing the distributed service. 

This paper is organised as follows. Sections 2 and 3 describe the service model and 
the communication model for cooperative mobile services in distributed service 
executions, respectively. Section 4 defines the distributed architecture for mobile 
terminals and the interaction between different modules. Section 5 contributes to resolve 
coordination challenges in distributed processes and Section 6 describes the most 
appropriate underlying communication model depending on the executing scenario and 
evaluates the paper contributions through the simulation of a distributed mobile service 
execution model. The paper concludes with related work and some conclusions of the 
proposed solution. 

2 Service model 

This section describes an example of a distributed mobile service that presents the 
coordination challenges discussed in the introduction and then defines a complex service 
model that takes into account the service internal logic and some abstractions to facilitate 
the understanding of service behaviour in mobile service execution environments. In the 
considered scenario, a set of services are coordinated in order to enable a distributed 
execution between different nodes from one or more networks. Each service is composed 
of activities and a logic that defines its execution. These activities exchange data and 
control events through a service execution engine and perform invocations to the  
so-called web objects through a communication middleware. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 171    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.1 Motivating example 

The home care assistance service is a good service example from the described 
environment. This service, described in Figure 1, notifies a group of volunteers and 
supervisors some alerts related to the monitoring of elderly people in their homes. If a 
monitored person (patient) has an accident, the activity that is responsible for collecting 
the information generated by the motion sensor will produce an event that will turn all 
the lights on in the patient home and send an alarm to the response services. These 
services consist of a group of volunteers, whose response time is very short (usually 
neighbours) and emergency professional services (ambulances, health workers, fire-
fighters, etc). Depending on the type of the generated alarm the alert is notified to one of 
the two groups or both. 

Figure 1 Motivating example: home care assistance service 

 

The service is composed of three individual services (monitoring service, volunteer 
response service and emergency response service) and can be modelled as a workflow 
diagram consisting of activities that invoke functionalities such as the connection to the 
motion detector (to detect a lack of motion problem of the monitored patient), the home 
illumination system and mechanisms to respond to alarms. 

This example involves some requirements over the service model: 

 First, service execution is distributed among several entities and atomic services 
perform invocations to environment capabilities and IoT objects. Service distribution 
favours a more decoupled service execution and also sensible information is sent 
only to the entity that is authorised to manage it. 

 As each entity consists of a set of activities, it should be taken into account that these 
entities pass through different states and require coordination with other entities to 
make transitions between states. 

 



   

 

   

   
 

   

   

 

   

   172 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

 Service coordination must be dynamically adapted to include more participants that 
arrive during service execution, as new patients or volunteers may appear. Events 
produced by publisher activities should be notified to dependent activities, and this 
number may vary over time. 

2.2 Internal service model 

The coordination model defined in this paper meets the requirements proposed in the 
previous paragraph and relates the concepts of services, tasks and activities. A composed 
service consists of a distributed workflow that can be executed. We define individual 
service (from now we call them just services) as each one of these distributed workflows, 
which are individually created or are part of a more complex service, has been 
fragmented/partitioned (Fdhila et al., 2010). The fragmentation process covers the actions 
of computing, initialising and distributing a set of fragments needed for carrying out a 
service. The service should consider other aspects such as user interaction, life cycle 
management and security, which are out of the scope of the paper. We also assume that 
all the services are successfully placed in mobile devices and the information about 
service interaction is stored in the SDL (Service Description Language) document, which 
contains the necessary information to execute the composed service. 

A task is the instantiation of a service that performs a work. Tasks are arranged and 
initialised in the service bootstrapping process, which will be explained later. A task is 
composed of at least one activity. For example, the control service is instantiated in as 
many tasks as patients are concurrently monitored. 

An activity is an atomic unit of a task. It manages the communication with an object, 
which can be physical or digital, to perform an operation. We classify operations 
according to their ability to produce data (sensors), consume data (actuators) and process 
data (processors). Activities trigger data and control events that are consumed by other 
activities in their own task scope or external task scopes. In the motivating example, a 
control event is generated from the motion detection activity and is internally notified  
to the set audible alarm activity. In addition, in a distributed workflow scenario there are 
interactions between activities from different services. The alert notifier activity 
generates a data event that is consumed by the alert receiver activities in the voluntary 
and emergency response services. We define limit activity as any activity that 
communicates with other activities contained in a different service by using data or 
control events. 

2.3 Abstraction for service coordination 

In order to manage the complexity of this service model, we define four abstractions: 
states, events, operations and properties. 

 State: It represents a unique configuration of information in a service. It integrates a 
complete set of properties (name-value pairs) that represents something relevant and 
significant for the other services to know. A stateful service is something debatable 
as services are normally used in a stateless fashion. This is also why WSDL and  
WS-* standards omitted the notion of state, which some authors consider a mistake 
(Daniel et al., 2009), as stateful services are the natural way to bridge applications 
and data-oriented services. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 173    
 

    
 
 

   

   
 

   

   

 

   

       
 

 Events: Notify state changes. Events are initiated either by user actions on the UI, by 
requests from other services or by results from invocations to IoT objects. Events 
also can contain data as name-value pairs to be transferred to other dependent 
services. These services subscribe to events to enable coordination of executed 
services and state changing. 

 Operations: Represent invocations made by service activities through their defined 
methods. The most common operations are related to invocation to IoT elements and 
local capabilities (functionalities provided by executing nodes or devices) and also to 
the provision of graphical elements such as user interfaces. Usually, operations cause 
state changes and the generation of the corresponding state change events. 

 Properties: Represent configurable conditions at runtime or design time, which 
along with operation results determine the state to evolve. 

Figure 2 shows the home care assistance service represented with these abstractions. 
Considering the first service, monitoring service, we note that it has two states: the first 
state expects to detect a problem and then the service evolves to a second state for 
invoking the necessary operations (send alarm and turn on lights). After the state change, 
the service produces an event that is consumed by the control service in order to start 
with the alarm notification state. 

Figure 2 Service model in home care assistance service 

 

The reason for using this abstraction model for service communication is that the internal 
complexity of each service is difficult to coordinate and can be decoupled from the 
dependencies of this service. From the view point of service, coordination services are 
considered as event generators and the communication with them can be performed 
through a communication channel defined by the event type instead of through each of 
the communication points defined by limit activities. By decreasing the amount of 
communication points, the amount of communication ports and physical addresses is also 
reduced; so, performance in the communication layer is improved. 



   

 

   

   
 

   

   

 

   

   174 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

The use of this service model for distributed service execution scenarios involved 
some challenges. First, the interaction between services should be considered at the 
service and communication levels. In this work, we define logic gates between 
distributed services, corresponding to the most common workflow patterns (van der Aalst 
et al., 2003) and we enable communication establishment between limit activities by 
creating and optimising communication channels. Second, we describe how to integrate 
the runtime coordination based on states, events, operations and properties in the 
communication level. Finally, we show how the architecture is dynamically adapted to 
include more participants that arrive during service execution. 

3 Communication models 

The proposed model for the communication level in order to support the service model is 
based on the publish/subscribe paradigm. Publish/Subscribe (Pub/Sub) systems are 
basically composed of three main components: publishers, which are the content producers; 
subscribers, which express their willingness to consume specific content; and brokers, 
which put in contact publishers and subscribers by storing and forwarding information. 

3.1 Publish-subscribe communication model 

The use of a pub/sub-based communication model implies two advantages in these 
environments. First, the spatial and temporal decoupling provided by publish/subscribe 
enables the independence between event publishers and subscribers, which supports the 
arrival of new participants and the protection against connectivity losses. Second, a 
communication model based on notifications enables a straightforward transmission of 
events produced by services. 

Figure 3 depicts our simplified model which is composed of a network of nodes that 
are interconnected through pub/sub serving brokers, which allows message event 
transmission from content publishers to subscribers. Serving brokers can be external 
entities, separated from workflow participants, or can be embedded into a client to avoid 
external infrastructure support. We define a client as an edge entity of the pub/sub 
network. From the subscriber/producer’s side, our model leaves the typical primitives 
publish, subscribe and notify as simple as possible, and keeps the model complexity in 
services. Despite this, as brokers are location-independent they can also run together with 
producers and consumers, so it ensures the service execution even when there is no fixed 
pub/sub infrastructure. 

Figure 3 Communication model 

 

Publish/Subscribe System
N-to-N links

Pub/Sub
Serving 
Broker

Service Workflow 
Participants 

Pub/Sub
Serving 
Broker

B

B

B

Service Workflow 
Participants

Producer

Consumer 

Group of Terminals

Service 1

Service 2

Consumer 
& Producer

publish

notify

subscribe publish

subscribe

notify
Service 3

Service 1

Service 1

Service 2

Executing 
services

Embedded Pub/Sub 
Serving Broker

Service Workflow 
Participants

 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 175    
 

    
 
 

   

   
 

   

   

 

   

       
 

3.2 Gossip-based protocols 

The problem of event transmission based on static routing is that, after a network fall, 
brokers wait for a network recovery to send the information packet. This is known as the 
busy waiting problem. To avoid this problem when recovering network operation after 
falls we have extended this communication model with the use of gossip protocols. 

Gossip-based algorithms (Eugster et al., 2004) are a group of network protocols  
for information propagation in distributed systems. Gossip-based algorithm offers 
advantages (Birman, 2007) for environments where simplicity, scalability and convergent 
consistency are crucial, such as distributed services. Some gossip-based mechanisms 
exist (Song et al., 2009) for predicting service workflow; however, our solution not only 
limits to the workflow itself, but also how the whole event dissemination is adapted in 
runtime and the benefits of using cooperation mechanisms between distributed services 
and distributed pub/sub systems. 

Event dissemination performed by the brokers is managed by the round time, which 
not only affects the dissemination rate but also the network saturation degree.  
Thus, a compromise is maintained depending on the network topology and the broker 
relationship with its neighbours. 

The use of gossip protocols is justified for networks of unknown size in which we 
need to spread news robustly (Eugster et al., 2004); therefore, it fits perfectly in an 
environment with broker and node losses. It also supports a service model in which there 
are different versions of events. A gossip broker checks the version of the newly arrived 
event and if this version is equal or less that the processed event it discards this new 
event. Therefore, the information flowing through the network is always the most 
updated and it prevents that the arrival of outdated events causes unexpected behaviours 
in running services. In our model, we define that a service goes through a set of states. If 
the workflow has no loops (its representation graph is acyclic), the transition always 
occurs to new states and, therefore, each state can be associated with a version of events 
that are generated in the service. However, if the workflow returns to previous states the 
event version should be increased for each state change. 

3.3 Node interoperability 

Interoperability between nodes is tackled in two levels. In the communication level, it is 
solved using the same pub/sub protocol. In our work, we use the Message Queue 
Telemetry Transport protocol (MQTT Protocol Specification, see http://public. dhe. ibm. 
com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html). Conceptually, the nodes must 
agree on the type of events that publish and consume. To do this we use a topic-based 
system (Eugster, 2007), in which messages are published to ‘topics’ and subscribers will 
receive all messages published to the topics to which they subscribe.  

In order to agree on the used topics, we use a topic domain, shared by all entities, 
divided into namespaces. Topics are published in a namespace to ensure that notification 
messages are received in the appropriate language. In this way, we use the same topic 
structure to ensure that incompatible notifications are not received. Each topic in a topic 
namespace (tns) can have zero or more child topics, and a child topic can itself contain 
further child topics. A topic without a parent is termed as a root topic. We use the 
forward slash (/) character to indicate a ‘child of’ relationship. For example, the 
tns1:alarm/manual refers to the subtopic manual, subset of the parent topic alarm, in the 
namespace tns1. 



   

 

   

   
 

   

   

 

   

   176 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

This approach supports transformation and aggregation of topics, that is, it is possible 
to construct configurations (using intermediary brokers) where the topic subscribed  
by the subscriber differs from the topic published by the publisher, yet notifications from 
the publisher are routed to the subscriber by a broker that is acting according to 
administratively defined rules. For example, a subscriber to the topic tns1:alarm also 
receives notifications from topic tns1:alarm/automatic. In addition, it is possible for 
actors to define additional topics based on existing topics without requiring coordination 
with the actor responsible for creating the topics that are being built on. Our solution is 
compatible with the WS-topics OASIS standard (Vambenepe et al., 2006), which present 
a set of ‘items of interest for subscription’ in web service environments, and it has been 
extended to be aligned to a non-WS environment. 

An example of a topic hierarchy for home care assistance service is shown in  
Figure 4. The tns chosen corresponds to the English language, to avoid language 
incompatibilities. A root node has been added that contains the identifiers of the service 
instances that are being executed, to avoid correlation problems, as described in Section 4. 

Figure 4 Home care assistance service topic hierarchy 

 english ...

alarm volunteer-
notification

decission

manual automatic ok busy

...Namespaces

Root topics

Child topics

instance

instanceId1 ...  

4 Architecture for cooperative mobile services 

The proposed system is supported by the defined the terminal architecture, depicted in 
Figure 5, which is applied to each of the mobile devices participating in the service 
execution. We describe the process and the interaction between the main elements. 

Figure 5 Distributed architecture (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 177    
 

    
 
 

   

   
 

   

   

 

   

       
 

Once the system receives the (1) SDL document, which contains information about event 
dependencies and agreed topics for communicating with other services, the (2) Service 
Orchestrator (SO) starts the service execution by invoking the functionality of the 
activities in the workflow. The middleware (3) is responsible for accessing the 
functionality described by the running activity (see Figure 5). It includes support libraries 
for local invocations to device capabilities (camera, contacts, etc.) and to remote objects 
(objects in the WoT, databases, web services, etc.). 

When the orchestrator detects a limit activity means that a relation between the 
execution service and another one exists through this limit activity. This relationship is 
based on the exchange of events that are control mechanisms (used to start or resume the 
execution in other services) and also information between activities, such as properties or 
result from previous operations. The service orchestrator uses the coordination API (4) to 
invoke the sendEvent (InstanceId, ActivityId, data) method so that the Service Manager 
(SM) carries out the process of communicating the limit activity with their neighbours. 
The service orchestrator waits until the service manager asks to execute a new limit 
activity with the receiveEvent (InstanceId, ActivityId) method. To address these 
coordination challenges, the SM uses the Network Communicator (NC), which initiates 
the exchange of events between mobile devices at the network level, following the 
publish/subscribe paradigm. Using this paradigm is justified by the need for time 
decoupling (wherein the sender and receiver of a message do not need to be involved in 
the interaction at the same time) and space decoupling (wherein the messages are 
directed to a particular symbolic address or channel and not directly to the address of an 
endpoint), which enable the publication of data and control events to an unknown 
number of nodes in an unknown location. 

We define communication point as each of the input and output information ports of 
each activity. Each communication point is associated with the event type it transmits 
and, according to the defined service model, with a single topic. This association is 
defined in the service’s SDL and is interpreted by the SM. The communication between 
the SM and the NC is via the communication API (5), which includes the publish (topic, 
event) and subscribe (topic, callback) methods, used to publish (control or data) events 
that generates a given communication point and to receive events published by other 
devices in a callback method. The method unsubscribe (topic) is used to notify to the 
communication infrastructure that the node wants to leave the service execution and no 
longer wish to receive events. 

The NC solves the correlation problem by adding a topic that identifies the service 
running instance to the basic topic. It uses the Full TopicExpression Dialect (Vambenepe 
et al., 2006), which contains XPath (Clark and DeRose, 1999) expressions to identify 
more than one Topic. We use the conjunction operator (&) to bind each event topic with 
an instanceId. The NC uses this composed topic for the pub/sub messages and transmits 
them to the pub/sub broker (6), which can be an internal or an external entity (not 
implemented in the mobile phone) that manages the subscription information necessary 
to deliver publish-subscribe messages. If the broker is embedded into the terminal 
architecture, the pub/sub communication protocol uses the localhost interface for 
communicating with the broker. Thus, we favour a low coupling and allow other modules 
to use the broker, such as the middleware module, in order to publish sensor data as in 
the work of Alcarria et al. (2012a), which describes a middleware that incorporates 
various communication paradigms, including pub/sub, for communication with external 
resources. 



   

 

   

   
 

   

   

 

   

   178 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

This architecture is replicated in each participant. When a connection to a participant 
is lost, the network communicator detects the disconnection and the serving pub/sub 
broker stores the packets until the node reconnects. Then, the broker sends to the node all 
the late packets. When the connection to a broker serving a set of nodes is lost, these 
nodes are out of service, but the messages they want to send are stored in the network 
communicator module. Also, messages directed to the offline broker are stored in  
the neighbour brokers, until an eventual reconnection. In the event that the offline  
broker belongs to a message route, the simplest approaches are to let the neighbour 
brokers wait until a broker reconnection to continue with the message routing or to 
manually redefine the route to avoid including this broker. Our solution considers a more 
complex approach, based on the use of gossip protocols, which take advantage of the 
dissemination mechanisms to find an alternative path by a controlled event flooding to 
avoid network congestion. 

5 Managing distributed processes 

The main contribution of this paper is how the SM resolves three coordination 
challenges. The first one is service interaction and communication establishment, 
assuming in this paper that communication between activities in the same service is 
resolved by the service orchestrator. To resolve the service interaction problem we define 
logic gates, corresponding to the most common workflow patterns (van der Aalst et al., 
2003) and create optimised communication channels between logic gates. The second 
challenge is related to the runtime coordination, in which a contribution is performed  
by defining interactions between logic gates. Finally, a support for arrival of new 
participants at runtime is described by defining two participant aggregation modes. 

5.1 Service interaction concepts and definitions 

We use logic gates to enable communication between services, which can be seen as 
structured workflows. These logic gates follow the workflow patterns model, defined by 
van der Aalst et al., corresponding to basic control flow patterns and advanced branching 
and merging. 

A logic gate LG is a tuple (П, type, πctrl), where П is a set of publication (ПP) or 
subscription (ПS) communication points, type  {publication, subscription} indicates 
whether the logic gate is publisher (its communication points send a message to other 
services) or subscriber (its communication points receive a message from other services) 
of data and πctrl represents a control point present only in some LG. 

Figure 6 shows the existing communication points in each logic gate. The sequence 
(SEQ) pattern is modelled with a single communication point and an OR gate with n 
outputs is defined as ПOR ≡ {π1, π2, …, πn, πctrl}. 

We consider the AND, XOR and OR (activates all the branches, only one, or an empty 
or non-empty set of them, respectively) as publication gates and ANDj, XORj, ORjS and 
ORjD as subscription gates. ANDj transmits the execution when all branches have been 
activated and XORj for any activated branch. We define the ORjS and ORjD as logic 
gates with a control communication point connected to a previous OR gate to support the 
structured synchronising merge and the structured discriminator workflow patterns. 

 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 179    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 Logic gates and associated patterns 

 Sequence

AND
cp1

cpn

... ANDj
cpn

cp1

..

. XOR
cp1

cpn

...

XORj
cpn

cp1

..

. OR
cp1

cpn

... ORjS
cpn

cp1

..

.

control control

ORjD
cpn

cp1

..

.

control

Parallel 
Split Synchronization

Exclusive 
Choice

Multi-merge Multi -choice Synchronizing 
Merge

Discriminator

cp1

cp1

 

The structure between the OR and ORjS/ORjD gates is blocked until all the active 
branches are processed. ORjS transmits the execution when it receives the first branch 
activation and ORjD delays the transmission until all branches have been activated. The 
SEQ gate (transmits the branch activation) can be used for publication and subscription. 

5.2 Channel creation 

Let 1 and 2 be two producer and consumer limit activities, respectively. We define the 
predecessor and successor functions such that 1 = pre(2) and 2 = suc(1). In order to 
connect these activities, it is needed to introduce a logic gate between them and create 
channels between the communication points of the activities and the logic gate, as shown 
in Figure 7. Thus, we associate each limit activity with a logic gate. We define channel  
as the tuple (πp, πs), where πp and πs belong to the communication point set from a 
publication and subscription gate, respectively. Activities Act1, Act2 and Act3 are 
associated with the AND logic gate through channels CH1 and CH2 in Figure 7. 

Figure 7 Channel creation 

  
cp1

cp1
AND

cp1

cp2

Act2

Act3
Act1

CH1

CH2
 

At this stage, channel creation occurs by following the process illustrated in the pseudo-
code of Algorithm 1. Let AOR ≡ {1, 2, …, n} be the set of consumer limit activities of 
a service. After scanning all the communication points of the subscriber logic gates of 
each activity (1) the identifiers of each communication point are retrieved (2) and used to 
look up the point of the assigned publication gate into the SDL document (3). After that, 
a callback address is created and bounded to the communication point (4), a channel is 
generated (9) and, finally, after retrieving the topicId from the share topic hierarchy (10), 
the subscribe method, from the communication API, is invoked (11).  

 
 



   

 

   

   
 

   

   

 

   

   180 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Algorithm 1 Channel creation and optimisation 

Channel creation:
 
 A 

1:  πj  ПS from LG() 

2: commPointId = getId(πj) 

3: search in SDL associated πj  ПP from LG(suc())
 

4: create new callback = f(πj) 

5: if: multiple Пi = {πi1, πi2, …, πin} 

6:      set ch(Пi, πj) 

7:        resolve commPointId[] in topicId[] 

8:        invoke subscribe(topicId[], callback) 

9: else:  set ch(πi, πj)  
10        resolve commPointId in topicId 

11:       invoke subscribe(topicId, callback) 

By the channel creation process, all events generated by a service are linked to one or 
more services, according to the communication patterns defined by the considered logic 
gates. 

However, the channel creation process is not so simple in the communication plane. 
By having a distributed architecture following a P2P model, in which each node knows 
only to communicate with its neighbour nodes, the discovery of publisher nodes becomes 
a difficult task. For this discovery process, the communication model based on a gossip 
solution introduced in Section 3 is used. Section 6 compares this solution with a standard 
technique based on recursive search of unvisited neighbours for the channel creation 
phase. 

5.3 Channel optimisation 

If the output events of some communication points of a logic gate are equal (they share 
trigger conditions), it is possible to integrate multiple communication points in the same 
channel, avoiding generating additional channels (see lines 6, 7 and 8 in Algorithm 1). 
We define optimised channel as a tuple ch(Пi, πj), where Пi is a subset of the whole 
communication point set of a publisher logic gate and πj is a communication point that 
belongs to the set of a subscriber logic gate. The degree of optimisation of a channel 
O(ch) is given by card(Пi), i.e. the number of communication points that compose the 
optimised channel. For example, for an AND = (ПAND, publicator) gate, O(ch) is equal to 
the total number of communication points of the gate, as this gate replicates the same 
events in each output. This way, using a logic gate with an optimisation level of O(ch) 
means that the number of published events is reduced by O(ch)-1 (since all the 
communication points share the same pub/sub topic the network broker can use the 
multicast technique to forward a single event to all subscribers). 

5.4 Runtime coordination 

At runtime, control events are transmitted through the created channels. Depending on 
the type of the logic gate involved in the channel formation the procedure varies. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 181    
 

    
 
 

   

   
 

   

   

 

   

       
 

For the subscription gates, in the case of SEQ, once the data are received from the 
established channel, the SM invokes the startLimitActivity method from the coordination 
API so that the service orchestrator executes the limit activity associated with the gate. 

In the case of ANDj, the SC waits until all its branches receive events to contact the 
orchestrator. Regarding the XORj gate, the SC invokes startLimitActivity for each event 
received from the established channels. In the case of ORjS, to implement the structure 
synchronising merge pattern, the information from the πctrl of a previous OR gate is used 
to determine how many branches the OR gate has activated. The SM waits for the control 
events in all activated branches and, when the last event arrives, asks the orchestrator to 
start the execution. If the previous gate is an AND, the SM knows that all branches are 
activated and waits for the arrival of the control event in all branches. 

In the case of the ORjD, to implement the structured discriminator, the SM, using the 
information received from πctrl, routes the first control event and filters the events from 
the rest active branches. 

For publication gates, in the case of SEQ and AND, the orchestrator invokes the 
endActivity (InstanceId, ActivityId, result) method from the coordination API when a 
limit activity completion event arrives; and the SM publishes the control event by all the 
communication points. In the case of XOR and OR gates, a decision is required to 
activate the branches, depending on the result values. Furthermore, the OR gate publishes 
the branch activation decision through the control port. 

5.5 Managing participant arrivals at runtime 

The service model and the proposed architecture support the arrival and disconnection  
of new participants, even for running services. We define two aggregation modes, 
depending on the scope in which they occur: static scope and instance-based. 

In the static scope aggregation, the participant and their services are added to the 
whole workflow for all instances of the composed service. Knowing the set of topics to 
be subscribed and the identification of executing service instances the network 
communicator is capable of establishing channels with deployed logic gates, by changing 
all AND, OR and XOR logic gates so that they acquire a new output branch, 
corresponding to this new service. These modified gates will be of the same type as 
before, except in the case of SEQ gate, which will become AND, as the transformation of 
a SEQ to an OR or XOR gates requires a branch activation condition that has not been 
specified. Regarding publication processes, a service arrival involves adding a new 
branch to the ANDj, XORj, ORjD and ORjS gates, and transforming a SEQ gate to a 
XORj, which transmits the execution for any activated branch. An example of participant 
aggregation in the static scope is when a participant executes a service with a different 
workflow from the workflows specified in the composed service. Figure 1 shows how the 
send alarm activity is linked to the store alarm activity through an SEQ gate, which  
will become a XORj gate with a number of input branches equivalent to the number  
of existing residences, so that this XORj gate transmits each of the alarms received, 
regardless of the instance in which they are located. 

For the instance-based aggregation, the participant is integrated in a single instance 
of an executing service or his/her terminal creates the instance if this participant starts the 
service. In order to include this participant in the composed service execution, the other 
participants should be aware or the definition of new instances and the aggregation of 
these instances in the shared topic tree, since subscription messages should contain the 



   

 

   

   
 

   

   

 

   

   182 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

instance identifier to solve the correlation problem. We can find an example of instance-
based aggregation also in the home care assistance service, but this time in the 
aggregation of volunteers. A new participant executing the volunteer response service 
requires creating a new instance, as volunteer responses are managed individually by the 
control service, waiting for confirmation that the volunteer can take care of the patient 
with problems. 

Using the novel approach of managing workflow coordination by pub/sub models the 
publication or subscription to new topic is not needed when new participants arrive. 

6 Prototype evaluation 

We validate the service and communication models defined in this work by a qualitative 
and quantitative analysis of a set of services. We have developed the service architecture 
in a runtime environment in which we test the performance of our solution in the channel 
creation and runtime coordination phases. Besides, we define a situation of lack of 
network connectivity to compare the performance of the solutions that we call standard 
pub/sub and gossip-based. 

Our goal is to check whether these two solutions for distributed service executions 
are able to detect changes in the pub/sub network topology, such as link failures and 
converge on a new loop-free routing path. We focus on robustness against link losses 
because it is a recurring problem in environments for the execution of mobile services, 
and the solution of this problem enables the transmission of event-based information 
between various participants executing services in mobility. 

In these two solutions, we use an MQTT implementation in which we apply two 
levels of optimisation. The first one, channel optimisation, is related to the pub/sub 
model and specifically to the broker’s capability of using the multicast technique to send 
a single publish to multiple subscribers of the same topic, i.e. the same channel (we have 
explained this in Section 5.3). The second optimisation level is called multiple topic 
subscription and enables the establishment of all channels associated with a service with 
a single MQTT subscribe message. MQTT makes possible the use of this technique. 

6.1 Environment preparation 

We have implemented the described model and architecture using the MQTT (Message 
Queue Telemetry Transport) protocol, which is currently in process of standardisation. 
Three different environments have been defined. 

RealEnv is a real-simple environment for coordination of distributed service in 
mobile devices. This environment consists of three android mobile phones (one Samsung 
Galaxy Note and two Google Nexus S), an MQTT client for android and a single open 
source message broker based on java called Moquette (Moquette Website) installed on a 
server with Core i7 2.80 GHz, 8 GB of RAM and Ubuntu 12.04 64 bits; all the devices 
connected through a WiFi 802.11g network. In RealEnv we performed a proof of 
concept, implementing the home care assistance service and distributing it among 
terminals. The RealEnv environment is considered to provide the most accurate values 
concerning execution delays. The gossip-based solution was programmed in Java 1.6. It 
has around 8000 lines of code, including the MQTT libraries, so it is enough suitable for 
current machines. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 183    
 

    
 
 

   

   
 

   

   

 

   

       
 

SimulatedEnv decouples the service and communication levels through the ns-3 
simulation environment (Ns-3 simulator, see http://www.nsnamp.org). We consider a 
client and a broker with an MQTT support library that we have implemented (MQTT for 
ns-3 SourceForge Project, see https://sourceforge.net/projects/mqttforns3/). We use TCP 
as the transport level protocol. Communication between service and communication 
levels is achieved through the communication API, defined in the ns-3 environment to 
invoke pub/sub messages from an external application to ns-3, written in C. The 
advantage of SimulatedEnv is that it supports topologies with a large amount of nodes, so 
that it is used for scalability tests in the channel creation phase. 

VirtualEnv is a scenario that combines the advantages of RealEnv and SimulatedEnv. 
It consists of two main parts: the first is the simulation within the ns-3 simulator (version 
12.1) and the second is a set of N nodes implemented using a virtualisation technique 
called containers. Containers are created using the standard Linux utilities (LXC). In the 
configuration phase, we define parameters such as: ip address, operation mode (e.g. 
physical or virtual) and bridging. In the particular scenarios, it is necessary to define the 
communication interface in ‘phys’ (physical), as this allow us to execute pub/sub brokers 
with the same configuration as a real scenario but at the same time isolated at the kernel 
level. 

We define all the network topology parameters using a script that defines the nodes, 
network interfaces, connections and applications. Even when this approach is more 
complex, it is also more flexible than hard-coding the network topology. It is necessary 
to define TapBridge-type devices in order to ensure that ns-3 and containers will 
communicate back and forth. In this case, we also set the corresponding physical 
interfaces for the respective containers. The operation mode of the TapBridge is 
ConfigureLocal. This operation mode allows to automatically create interfaces so 
TabBridges will inherit the same configuration. These devices are installed on ns-3 
nodes, as ghost nodes, so they can communicate, through the same network interfaces, 
with ns-3 or applications that can run inside the container. Finally, in runtime the ns-3 
creates the TapBridge and containers connect to them. 

The performance of the pub/sub nodes in VirtualEnv is equivalent to RealEnv with 
the advantage of providing a large amount of containers. In our server, we were able to 
open 96 containers. Another advantage of this scenario is the possibility of using the 
monitoring and configuration features of ns-3 to simulate link losses. Figure 8 shows the 
architecture of this scenario in which we have two containers, which host a broker and a 
pub/sub node with the full architecture, similarly to RealEnv. 

6.2 Qualitative analysis 

The decoupling between the service level (execution of distributed services) and the 
communication level allows us to separate the establishment of coordination mechanisms 
between services from the communications performance for the channel creation and 
runtime coordination processes. A communication model that supports both of these 
protocols is important to cover all situations in which each protocol offers their 
advantages. However, these situations and the improvement of the protocol in a given 
situation must be defined. 

For an event-based service coordination environment with mobile terminals the most 
important factors to consider in a system are as follow: 



   

 

   

   
 

   

   

 

   

   184 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

 Using communication models that support event-based communication. Event-based 
systems differ markedly from request-based systems, since they are based on 
asynchronous ‘push’ messages, in a fire-and-forget, unidirectional pattern. Also, 
events are transmitted and communicated in the form of autonomous messages and 
they do not often require additional context and dependencies. 

 Robust execution against link and device falls and capability to resume execution, as 
the work environment considers coverage problems and network link losses. 

 Management of the arrival of new participants to the composed service execution 
and integration of new individual services. 

 Level of decoupling between service and communication levels, which encapsulates 
internal details of distributed systems. This facilitates that the functional processes in 
the service layer, where the business event took place is less dependent on the 
availability and completion of communication processes in the distributed network. 

Figure 8 VirtualEnv scenario architecture 

Linux Host
Container # 1

Network 
Simulator 3

NS‐3
Topology

Ghost 
Node

Ghost 
Node

Tap Device

Stack

Aplication Layer

Pub/Sub 
Node

Linux Host
Container # N

Tap Device

Stack

Aplication Layer

Broker

.   .   .   .   .   .   .

Host OS

External
Traffic 
Flow

External
Traffic 
Flow

Internal
Traffic 
Flow

Internal
Traffic 
Flow

 

The contributions of this work in terms the service and communication models  
consider all these factors. Our proposal uses a pub/sub model to support event-based 
communication. The ability to resume execution after several situations of link, broker 
and node failures is described in Section 4 and the arrival of new participants is tackled 
in Section 5.5 and is validated in Section 6.3 by introducing link losses in the 
communication network. Finally, the decoupling between service and communication 
levels is achieved by the API defined in the architecture and is considered for the 
validation scenarios presented in the environment preparation section. 

However, depending on the communication solution some of these aspects are best 
supported. Table 1 describes the suitability of each solution for each feature. 

 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 185    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Qualitative comparison summary 

Factors Standard Pub/Sub solution Gossip-based solution 

Event-based communication Pub-sub based Pub-sub based 

Performance against falls Active wait until recovery Dissemination overcomes fall 

New participants management Low-performance path 
discovery for channel creation 

High-performance path 
discovery for channel creation 

Level of decoupling Architecture based Architecture based 

Regarding the performance against falls and the capability to resume the execution when 
the communication has been recovered, the defined standard pub/sub solution does not 
consider dynamic path rerouting, unless it is implemented over a routing protocol 
supporting changes in the network topology, such as OSPF (Open Shortest Path First). 
Thus, when a link or a broker that handles communications between two nodes suffers a 
disconnection the standard pub/sub solution remains waiting for the link or broker to 
reconnect. Instead, the gossip-based solution that we defined in this paper uses the 
dissemination mechanism to reach the termination point and always find the alternative 
route if it exists. 

Regarding the support for the arrival of new participants, our solutions differ in how 
to perform channel creation between services of this new participant and those who are 
being executed on the other nodes. The gossip dissemination mechanism converges 
before a technique based on recursive search of unvisited neighbours implemented in the 
standard pub/sub solution for environments with a priori unknown network topology. 
Once the address and the serving broker of all network nodes are discovered, the pub/sub 
solution performs much better in terms of publication delay.  

In summary, our gossip solution should be used to enable information sharing in 
networks of unknown size and also when a robust transmission is needed in 
environments with node and link disconnections. However, the standard pub/sub solution 
we defined offers more performance when the network topology is known and once the 
channel creation phase is produced. 

6.3 Performance evaluation 

The goal of this section is to measure the feasibility of our solution in our working 
environment. In previous section, we stated that the gossip mechanism performs better 
than simple MQTT for the channel creation phase in unknown networks. However, it 
also offered less performance once brokers determined the information regarding the best 
path from publishers to subscribers. To evaluate this, we consider the SimulatedEnv 
which is composed of a network of 36 connected brokers, which is depicted in Figure 9c. 
We consider node 1 runs a service that requires information produced by the node 36 and 
therefore needs to establish a channel thought the network. 

We measured the time from the moment that node 1 invokes a receiveEvent, through 
its coordination API, until the subscribe message reaches the serving broker of node 36, 
and therefore updates the publication path. The MQTT specification does not define how 
to set the pub/sub paths among brokers, so we have set a simple recursive search and 
subscription mechanism for previously unvisited neighbours. This mechanism produces a 
258 ms delay (~14.3 ms per hop) to the whole path, since a single message needs 18 hops 
to reach its destination. On the other hand, the gossip mechanism offers network 



   

 

   

   
 

   

   

 

   

   186 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

convergence at an average of 11 hops. In this case, the gossip has used 177 ms (~16 ms 
per hop). The variation over time between each jump is due to the complexity of spread 
mechanism in gossip. However, when the number of hops is fixed, there is only one path 
between the publisher and the subscriber, so the MQTT simple solution is 17% faster 
than gossip MQTT solution. We have verified this by using a topology of 6 nodes in line, 
each node with an integrated pub/sub broker, as shown in Figure 9b. In this case, we 
measure the time since the node 1 sends an event through its coordination API until 
receiveEvent method of node 6 returns its result. The results showed a delay of 72 ms in 
simple MQTT and 84 ms in gossip. 

Figure 9 Evaluated network topologies (see online version for colours) 

c)

Subscriber

Publisher

b)

SubscriberPublisher

Subscriber

a)

Publisher

Node 1 Node 10

Node 1 Node 6

Node 1

Node 36

 

Once limit activities establish the communication channels, they start to exchange 
messages in runtime. We are interested in demonstrating that using gossip solutions is an 
accurate approach in environments with a high rate of failing links. For this task, we 
make use of the VirtualEnv environment where we have deployed 12 virtual containers, 
ten for brokers and two for two clients; clients are connected to broker 1 and broker 2, 
respectively, as shown in Figure 9a. Using the NS-3, we simulated that channels are 
likely to remain fallen over 1500 ms, so we send ten publications messages (with an 
interval of 500 ms) that will reach node 1 and finally node 10. We have also introduced a 
500 ms delay of processing time in each broker, in order to make the failing link time 
proportional to the time publication message packets make through the network. Test 
results are shown in Figure 10. The percentage of link loss runs every 500 ms. 

Our results show that the gossip dissemination protocol slowly improves the 
publication delay in comparison with MQTT simple. With a link loss around 10% the 
first solution offers an equal delay; however with a 20% of losses, gossip clearly 
outperforms MQTT simple. This is because, in these sort of topologies, even when there 
is a link failure in a broker that uses an optimal path, gossip takes advantage by sending 
the publication to a random peer, which could avoid current and successive link failures. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 187    
 

    
 
 

   

   
 

   

   

 

   

       
 

On the other hand, MQTT continuously verifies until the broker, that makes part of the 
optimal path, is reachable again so messages will finally get to subscribers. Despite this, 
we want to highlight the fact that the MQTT simple still performs better than gossip with 
low percentage of link loss. 

Figure 10 Publication delay comparison in environment with link losses (see online version for 
colours) 

 

7 Related work 

Related work tries to solve the problem of communications between mobile workflows 
from the IoT. Some works are related to the field of user/prosumer participation (Alcarria 
et al., 2012b). Generally, service communication is based on a data-driven approach, so 
that services can be created easily, with some composition (Gao et al., 2011) or mashup 
tools. Although there are some studies that combine data-driven composition with control 
flow specification (Rosenberg et al., 2008), we consider that the coordination between 
services based on the transmission control events (control-driven service composition) 
allows the execution of more complex cooperative services. The Presto framework 
(Giner et al., 2010) provides a service development platform for user participation in 
smart workflows, based on business processes. Our work also relies on user interaction 
with distributed elements and infrastructure of the WoT through their mobile devices, as 
it is proven their capability (Rodriguez et al., 2011) of being part of these scenarios. The 
work of Gómez-Goiri et al. (2011) shares similarities with ours, as they focus on the 
adoption of the triple spaces coordination language by heterogeneous and resource-
constraint devices; and we focus on the problems of service coordination in distributed 
mobile service executions. We also find similarities in the field of decentralised service 
orchestrations (Jayaprakash et al., 2010) or choreographies (Fahland, et al., 2011a). 

To manage this coordination, some authors (Tut and Edmon, 2002) propose the use 
of design patterns as reusable parts to compose services. In our work, we based on 
workflow patterns, specifically in the patterns defined by van der Aalst et al., to model 



   

 

   

   
 

   

   

 

   

   188 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

the connections between services (van der Aalst et al., 2005). van der Aalst et al. also 
point out the importance of unique identification of the elements of the process and the 
correlation problem (Fahland et al., 2011b), which we described in Section 3. 

The interaction between service activities is often described in an SDL document, 
expressed in a standard language like BPEL or BPMN, or some other languages adapted 
from the service logic. Even though, the SDL should follow good design patterns 
(Mateos et al., 2011) because of the constrains of the mobile environment. In our work, 
we leave the door open to the possibility of using any service definition language 
compatible with the used workflow patterns for our SDL document. However, 
orchestration languages such as BPEL are not intended for distributed executions. Some 
distributed BPEL solutions exist (Khalaf et al., 2007) but they are based on providing 
WSDL interfaces to all services and they do not support the pub/sub communication 
pattern, especially important in pervasive and mobile applications. 

The information exchange between coordinated services has been less addressed in 
related work. However, some proposals related to workflow decentralisation (Ranjan et 
al., 2008), task communication (Narayanan et al., 2011), and distributed orchestrations 
(Yildiz and Godart, 2007) have been found. Some authors (Yildiz and Godart, 2007) 
choose to solve the activity wiring using WSDL interfaces and SOAP messages. Other 
solutions use a tuple space (Ranjan et al., 2008) to manage the execution of scientific 
workflow applications by subscription/ notification methods. In other works (Nrayanan  
et al., 2011), virtual channels are used between sending and receiving tasks to ensure data 
communication. 

In our work, we use the publish/subscribe communication paradigm (Eugster et al., 
2003) as alternative to de-synchronise producers and consumers of information, and 
ensure functional decoupling in time and space (Costa et al., 2008). Pub-sub-based 
models can provide advantages (Fiege et al., 2006) over classic polling, which can 
overuse services and networks’ resources by continuously querying information.  

With regard to the communication support level, we highlight the works in 
reconfigurable communication middleware. The PLA middleware (Apel and Böhm, 
2005) has been designed as a flexible and lightweight middleware for ubiquitous 
computing, aimed for mobile terminals. The main difference with our proposal, from the 
point of view of software engineering, is that they combine minimal fine-grained 
components and use a mixin layer approach (Smaragdakis and Batory, 2002) to tailor the 
architecture to fit in a specific scenario. MUSIC (Rouvoy et al., 2009) also extends a 
generic middleware, which seamlessly supports component-based and service-based 
configurations. The functionality provided by a component can be dynamically 
configured to adapt the framework to different environments. In our work, we develop a 
complete solution which focuses on distributed service execution environments and is 
designed specifically for it. 

Integrating communication paradigms in access middleware has been tackled in the 
work of Morais and Elias (2010), proposing an architecture which supports the traditional 
synchronous model and different variations of the so-called asynchronous models. Other 
works, such as GREEN (Sivaharan et al., 2005), focus on the concept of reconfiguration 
in continuous execution environments, and provide a reconfigurable middleware 
(according to application requirements and context information) that supports pub/sub 
interaction types (topic-based, content-based and location-based) but only for one 
communication paradigm. Our previous work (Alcarria et al., 2012c) also focuses on  
 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 189    
 

    
 
 

   

   
 

   

   

 

   

       
 

reconfiguration to access to unknown devices but it uses the dynamic bundle provision 
mechanism present in the OSGi (Open Services Gateway Initiative) platform to provide 
continuous service execution. 

8 Conclusion and future work 

This work defines a cooperative service execution model for mobile environments in 
scenarios from the IoT and WoT. In this model, user mobile and fixed devices execute 
services that access external resources and interact with the user. The need to coordinate 
these elements at the data plane (transfer of information produced by users or web 
objects to other terminals) and the control plane (synchronisation and management of the 
execution flow of tasks and activities) has been detected. This paper contributes to solve 
three coordination challenges detected in such environments. The interaction between 
services is resolved by introducing logic gates between limit activities, based on well-
known workflow patterns. The channel creation and optimisation contribute to the 
communication establishment between limit activities, taking into account the arrival of 
new participants and the problems it arises in the communication layer. Finally, the 
runtime coordination is described by the interactions between the different modules of 
the defined architecture, in an environment with possible node and link loses. The 
validation of this work in real, simulated and virtual environments shows the acceptable 
performance of the pub/sub standard solution in the runtime coordination phase and the 
gossip-based solution for the channel creation phase and also for a scenario with a 
significant percentage of link failures (>10% of losses for the studied conditions). 

As future work, in the field of coordination of distributed services, we will investigate 
automatic workflow partitioning mechanisms and user participation in the design or 
personalisation of the execution process of workflow activities, as an evolution of the 
concept of the prosumer user (Alcarria et al., 2012b). In the communication layer, we 
will investigate on pub-sub broker federation protocols to support service deployment in 
real environments with higher performance requirements. 

References 

Alcarria, R., Robles, T., Morales, A., López-de-Ipiña, D. and Aguilera, U. (2012a) ‘Enabling 
flexible and continuous capability invocation in mobile prosumer environments’, Sensors, 
Vol. 12, No. 7, pp.8930–8954. 

Alcarria, R., Robles, T., Morales, A. and González-Miranda S. (2012b) ‘New service development 
method for prosumer environments’, Proceedings of the 6th International Conference on 
Digital Society, Valencia, Spain, pp.86–91. 

Alcarria, R., Robles, T., Morales, A. and González-Miranda S. (2012c) ‘Flexible service 
composition based on bundle communication in OSGi’, TIIS, Vol. 6, No. 3, pp.116–130. 

Anjum, A., Hill, R., McClatchey, R., Bessis, N. and Branson, A. (2012) ‘Gluing grids and  
clouds together: a service-oriented approach’, International Journal of Web and Grid 
Services, Vol. 8, No. 3, pp.248–265. 

Apel, S. and Böhm, K. (2005) ‘Towards the development of ubiquitous middleware product lines’, 
Lecture Notes in Computer Science, Vol. 3437, pp.137–153. 

Birman, K. (2007) ‘The promise, and limitations, of gossip protocols’, ACM SIGOPS Operating 
Systems Review, Vol. 41, No. 5, pp.8–13. 



   

 

   

   
 

   

   

 

   

   190 R. Alcarria et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Clark, J. and DeRose, S. (1999) Xml Path Language (xpath), W3C standard. Available online at: 
http://www.w3.org/tr/xpath (accessed 16 October 2013).  

Costa, P., Mascolo, C., Musolesi, M. and Picco, G.P. (2008) ‘Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks’, IEEE Journal on Selected Areas in 
Communications, Vol. 26, No. 5, pp.748–760. 

Daniel, F., Soi, S. and Casati, F. (2009) ‘From mashup technologies to universal integration: search 
computing the imperative way’, in Ceri, S. and Brambilla, M. (Eds): Search Computing – 
Challenges and Directions, Springer, Berlin Heidelberg, pp.72–93. 

Eugster, P. (2007) ‘Type-based publish/subscribe: concepts and experiences’, ACM Transaction on 
Programming Language Systems, Vol. 29, No. 1, Article 6. 

Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.M. (2003) ‘The many faces of 
publish/subscribe’, ACM Computing Surveys, Vol. 35, No. 2, pp.114–131. 

Eugster, P.T., Guerraoui, R., Kermarrec, A-M. and Massoulie, L. (2004) ‘Epidemic information 
dissemination in distributed systems’, Computer, Vol. 37, No. 5, pp.60–67. 

Fahland, D., de Leoni, M., van Dongen, B.F. and van der Aalst, W.M.P. (2011a) ‘Many-to-many: 
some observations on interactions in artifact choreographies’, Proceedings of the ZEUS 
Conference, Karlsruhe, Germany, pp.9–15. 

Fahland, D., de Leoni, M., van Dongen, B.F. and van der Aalst, W.M.P. (2011b) ‘Conformance 
checking of interacting processes with overlapping instances’, Proceedings of the 9th 
International Conference on Business Process Management, Clermont-Ferrand, France, 
pp.345–361. 

Fdhila, W., Dumas, M. and Godart, C. (2010) ‘Optimized decentralization of composite web 
services’, 6th International Conference on Collaborative Computing: Networking, 
Applications and Worksharing, Luxembourg, Luxembourg, pp.1–10. 

Fiege, L., Cilia, M., Muhl, G. and Buchmann, A. (2006) ‘Publish-subscribe grows up: support for 
management, visibility control, and heterogeneity’, IEEE Internet Computing, Vol. 10, No. 1, 
pp.48–55. 

Gao, L., Urban, S. and Ramachandran, J. (2011) ‘A survey of transactional issues for web service 
composition and recovery’, International Journal of Web and Grid Services, Vol. 7, No. 4, 
pp.331–356. 

Giner, P., Cetina, C., Fons, J. and Pelechano, V. (2010) ‘Developing mobile workflow support in 
the internet of things’, IEEE Pervasive Computing, Vol. 9, No. 2, pp.18–26. 

Gómez-Goiri, A., Orduña, P., Ausín, D., Emaldi, M. and López-de-Ipiña, D. (2011) ‘Collaboration 
of sensors and actuators through triple spaces’, IEEE Sensors 2011, pp.651–654. 

Jayaprakash, M., Shanmugam, M., Manikandan, P. and Shivaraj, S. (2010) ‘Decentralized service 
orchestration by continuous message passing’, International Journal on Computer Science 
and Engineering, Vol. 2, No. 5, pp.1627–1632. 

Khalaf, R., Kopp, O. and Leymann, F. (2007) ‘Maintaining data dependencies across BPEL 
process fragments’, Proceedings of the 5th International Conference on Service-Oriented 
Computing, Vienna, Austria, 17–20 September, pp.207–219. 

Mateos, C., Crasso, M., Zunino, A. and Ordiales, J. (2011) ‘Detecting WSDL bad practices in 
code-first web services’, International Journal of Web and Grid Services, Vol. 7, No. 4, 
pp.357–387. 

Moquette Website (2013) Java Small MQTT Broker Implementation. Available online at: 
http://code.google.com/p/moquette-mqtt/ (accessed on 16 October 2013). 

Morais, Y. and Elias, G. (2010) ‘Integrating communication paradigms in a mobile middleware 
product line’, Proceedings of the 9th International Conference on Networks, Menuires, 
France, 11–16 April, pp.255–261. 

Narayanan, S., Devaux, L., Chillet, D., Pillement, S. and Sourdis, I. (2011) ‘Communication 
service for hardware tasks executed on dynamic and partial reconfigurable resources’, 
Proceedings of the IEEE/IFIP 19th International Conference on VLSI and System-on-Chip 
(VLSI-SoC), Kowloon, Hong Kong, pp.196–199. 



   

 

   

   
 

   

   

 

   

    Resolving coordination challenges 191    
 

    
 
 

   

   
 

   

   

 

   

       
 

Ranjan, R., Rahman, M. and Buyya R. (2008) ‘A decentralized and cooperative workflow 
scheduling algorithm’, Proceedings of the 8th IEEE International Symposium on Cluster 
Computing and the Grid, Lyon, France pp.1–8. 

Rodriguez, J., Zunino, A. and Campo, M. (2011) ‘Introducing mobile devices into grid systems: a 
survey’, International Journal of Web and Grid Services, Vol. 7, No. 1, pp.1–40. 

Rosenberg, F., Curbera, F., Duftler, M.J. and Khalaf, R. (2008) ‘Composing RESTful services and 
collaborative workflows: a lightweight approach’, IEEE Internet Computing, Vol. 12, No. 5, 
pp.24–31. 

Rouvoy, R., Barone, P., Ding, Y., Eliassen, F., Hallsteinsen, S., Lorenzo, J., Mamelli, A. and 
Scholz, U. (2009) ‘MUSIC: middleware support for self-adaptation in ubiquitous and  
service-oriented environments’, Software Engineering for Self-Adaptive Systems, Vol. 5525, 
pp.164–182. 

Sivaharan, T., Blair, G. and Coulson, G. (2005) ‘GREEN: a configurable and re-configurable 
publish-subscribe middleware for pervasive computing’, Lecture Notes in Computer Science, 
Vol. 3760, pp.732–749. 

Smaragdakis, Y. and Batory, D. (2002) ‘Mixin layers: an object-oriented implementation technique 
for refinements and collaboration-based designs’, ACM Transactions on Software Engineering, 
Vol. 11, No. 2, pp.215–225. 

Song, W., Jiang, D., Chi, C., Jia, P., Zhou, X. and Zou, G. (2009) ‘Gossip-based workload 
prediction and process model for composite workflow service’, World Conference on 
Services, Los Angeles, CA, USA, pp.607–614. 

Tut, M.T. and Edmond, D. (2002) ‘The use of patterns in service composition’, Revised Papers 
from the International Workshop on Web Services, E-Business, and the Semantic Web, 
Toronto, Canada, pp.28–40. 

Vambenepe, W., Graham, S. and Niblett, P. (2006) Web Services Topics 1.3 (WS-Topics), OASIS 
Standard. Available online at: http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-os.pdf 
(accessed on 16 October 2013). 

van der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B. and Barros, A.P. (2003) 
‘Workflow patterns’, Distributed Parallel Databases, Vol. 14, No. 1, pp.5–51. 

van der Aalst, W.M.P. and Ter Hofstede, A.H.M. (2005) ‘YAWL: yet another workflow language’, 
Information Systems, Vol. 30, No. 4, pp.245–275. 

Wang, S., Sun, Q. and Yang, F. (2010) ‘Towards web service selection based on QoS estimation’, 
International Journal of Web and Grid Services, Vol. 6, No. 4, pp.424–443. 

Yildiz, U. and Godart, C. (2007) ‘Centralized versus decentralized conversation-based 
orchestrations’, 9th IEEE International Conference on E-Commerce Technology and the 4th 
IEEE International Conference on Enterprise Computing, E-Commerce, and E-Services, 
Hangzhou, China, pp.289–296. 


