
Flux
Enrique Barra

Two way data binding

▪ These are frameworks such as Angular, Backbone, Ember, …

▪ Also called mutation

2

Facebook had a recurring bug
in the notification and chat
panels.

Controller Model View
Updates

Notifies

Queries

User action events

Controller

Model

View

Action
Model

Model

Model

Model

View

View

View

View

View

Flux

▪ Flux is an architecture that they use at Facebook for their client
apps

▪ It perfectly fix with React components

▪ The most important concept is that data flows in one direction

▪ It isn't a framework, it is a pattern, an architecture

▪ More info at: http://facebook.github.io/flux/

3

http://facebook.github.io/flux/

Architecture

▪ It consists of DISPATCHER/S, STORES and
VIEWS (React Components)

▪ It is not the same as MVC (Model, View,
Controller)

▪ This architecture also has controllers, because
the views are sometimes called controller-
views

▪ Advantages:

▪ Unidirectional data flow and separation of
concerns make easy to think about the app,
trace bugs

▪ Different parts of the app will be decoupled

4

Dispatcher

Store

View

Action

Flux

▪ Architecture of the whole app, that enforces that the
data goes only in one direction

5

Dispatcher

Store

View

Action

Server

Dispatcher

Store

View

Action

Dispatcher

Store

View

Action

Dispatcher

Store

View

Action

Server

Architecture – explanation and components

▪ The user by interacting with the views generates
actions, that are passed to the dispatcher. Also
the server can generate actions.

▪ This actions are objects that are created with
some methods action creators

▪ The dispatcher calls the callback/s that the stores
registered according to the logic that they
execute

▪ The stores emit a “change” event
▪ The views receive this event that was previously

registered and that tells them that something
has changed and they ask for the new state to
the store

▪ The views perform a setState and are updated.
The setState causes a new render of the
component and their descendants

6

Dispatcher

Store

View

Action

Server

Flux – how it scales

7

We want to add thread control

N stores and M views
It is usually represented like this

Chat app

Dispatcher

Message Store

Message View

Actions

Dispatcher

Message Store

Message View

Actions

Thread
Store

Thread
View

Dispatcher

Message Store

Message View

Actions

Thread
Store

Thread
View

Unread Thread
Store

Dispatcher

Stores

Views

Actions

Flux

▪ It is not open source, because it is an architecture, not a software

▪ Facebook has released their dispatcher and utils
– http://facebook.github.io/flux/docs/dispatcher.html

– https://github.com/facebook/flux

▪ Different Flux implementations:
– Redux - https://github.com/reduxjs/redux

– Alt - http://alt.js.org/

– McFly - https://github.com/kenwheeler/mcfly

– …

▪ Or we can implement our own architecture step by step using
Facebook dispatcher and tools (it is not very difficult)

8

http://facebook.github.io/flux/docs/dispatcher.html
https://github.com/facebook/flux
https://github.com/reduxjs/redux
http://alt.js.org/
https://github.com/kenwheeler/mcfly

Flux
Enrique Barra

Redux Introduction
Enrique Barra

Pure functions

▪ They operate using only their arguments, not any other
element (function, variable, …) outside them

▪ In a more formal way:
– Given the same argument values, the pure function will return

always the same result
– The pure function has no side effect

▪ More info: https://en.wikipedia.org/wiki/Pure_function

11

https://en.wikipedia.org/wiki/Pure_function

Reduce

▪ It comes from the mapReduce programming model

▪ The “reducer” function takes the previous output (acc) and
the next value (item) and calculates the next output

▪ Example that counts the character of all the words in an array:
– Reduce done with “arrow function”:

– Reduce “traditional way”:

12

Array.prototype.reduce(function reducer(acc, item), ?initialValue)

Redux

▪ Redux is a library that implements the Flux pattern (with some
variations)

▪ Redux is defined as a “Predictable state container for JavaScript apps”

▪ Helps to write apps that behave in a consistent way and are easy to test

▪ It is in charge of decoupling the global state of the app from the visual part
(i.e. the components)

▪ Redux is a very small library (2KB approx.). The API is barely 5 functions,
and more important it is vanilla JavaScript, so it is framework agnostic, so
it can be used with any library or framework such as Angular, Polymer,
React, etc.

13

Redux Three principles

▪ 1. Single source of truth
– The state of your whole application is stored in an object tree within a

single store
– Makes easy to implement some functionalities like undo/redo that are usually

very difficult to implement
– Makes easy the communication with the server and the storage of this state

▪ 2. State is read-only
– The only way to change the state is to emit an action, an object describing

what happened
– Everything predictable
– There are no subtle race conditions to watch out for

▪ 3. Changes are made with pure functions
– To specify how the state tree is transformed by actions, you write

pure reducers
– Reducers are just pure functions that take the previous state and an action,

and return the next state
– Reducers return new state objects, instead of mutating the previous state
– Remember that a “reducer” is a function that takes the previous output (acc)

and the next value (item) and calculates the next output
14

Without Redux

▪ Without Redux, the child component calls his parent to tell him that an event ocurred
▪ Then the same process occur up to the top of the app, where the logic takes place

16

App

BoardHeader

Square

PROPS:
text

values
appClick()

PROPS:
Value

rowIndex
columnIndex
boardClick()

Calls appClick() when
boardClick() is called
(i.e. when a button

was clicked)

Calls boardClick() when
a button is clicked

With Redux

▪ With Redux, the child component dispatchs an action that will be attended by Redux
▪ Then Redux will pass new props to the App and it will be re-rendered if needed

17

Dispatch a redux action
That will be attended
by the reducers

Redux

App

BoardHeader

Square

PROPS:
text

values
appClick()

PROPS:
Value

rowIndex
columnIndex
boardClick()

Bibliography and resources

▪ Redux Core Concepts
http://redux.js.org/docs/introduction/CoreConcepts.html

▪ Levelling up with React Redux
https://css-tricks.com/learning-react-redux/

▪ Learn Redux
https://learnredux.com/

▪ Getting started with Redux
https://egghead.io/courses/getting-started-with-redux

18

http://redux.js.org/docs/introduction/CoreConcepts.html
https://css-tricks.com/learning-react-redux/
https://learnredux.com/
https://egghead.io/courses/getting-started-with-redux

Redux Introduction
Enrique Barra

Redux Lifecycle and API
Enrique Barra

Redux lifecycle

21

State

User Interface

ActionsReducer

Store

defines

triggers

sent to

updates

contains

Redux Elements

▪ State

▪ Actions

▪ Reducers

▪ Store

▪ API (to create the store, combine reducers, etc.)

22

State

User
Interface

ActionsReducer

Store

defines

triggers

sent to

updates

contains

State (immutable)

▪ The state of the app is a JS object (immutable, not directly modified)

▪ Example: TO-DO app

23

{
todos: [
{ text: ‘Learn React',
completed: false },

{ text: ‘Learn Redux',
completed: false },

{ text: ‘Learn Angular',
completed: true }

],
visibilityFilter: 'SHOW_ALL'

}

Actions

▪ The state can only be modified triggering actions

▪ Action: JS object that describes the change to perform on the state

▪ Actions have a “type” attribute (mandatory) and the rest of the attributes
are optional and will depend on what the action does

▪ Example:

▪ Usually created with functions called “action creators”

24

{ type: 'ADD_TODO', text: 'Go to swimming pool' }
{ type: 'TOGGLE_TODO', index: 1 }
{ type: 'SET_VISIBILITY_FILTER', filter: 'SHOW_ACTIVE' }

export function addTodo(text) {
return { type: 'ADD_TODO', text: text };

}

Reducers

▪ Pure functions that apply actions on the state

▪ They take the previous state and an action and return the new
state

▪ Things that we cannot do inside a reducer:

– Modify its arguments

– Perform tasks with side effects such as API calls or route changes

– Call a non pure function, for example Date.now() or Math.random()

▪ We will usually structure it in several reducers:

– Each reducer deals with a specific part of the state => it is easy to
manage apps with a lot of information

– The reducer takes as param a piece of the old state and the action
to apply and returns a equivalent part of the new state

25

Single Reducer structure

// import {..} …….

function myReducer(state = “DEFAULT_STATE”, action) {

switch (action.type) {

case 'ACTION_NAME':

let newState = Object.assign([], state);

// … Modify newState

return newState; // Return the modified state

default:

return state;

}

}

export default myReducer;

State param is the piece of the
state that corresponds to this
reducer, not the full or global
state

In the action param comes all the
needed information to modify the
state, specially the type of action that it
is

26

Example of Reducer

function todos(state = [], action) {

switch (action.type) {

case 'ADD_TODO':

return state.concat(

[{ text: action.text,

completed: false }])

case 'TOGGLE_TODO':

return state.map((todo, index) =>

action.index === index ?

{text: todo.text, completed: !todo.completed }:todo)

default: return state

}

}

27

Only affects the
piece of state
corresponding
to the “todos”

In the default
case they

return the same
piece of state

Store

▪ The store is the object that joins state and reducers
▪ The store has the next responsibilities:

– Contains the full state of the app
– Allows the access to the state via getState()
– Allows state updating via dispatch(action)
– Register the listeners via subscribe(listener)
– Manages the removal of the listeners via the return of the function

subscribe(listener)

▪ It is important to notice that there is only one store in the Redux
app. When we want to split the app logic to manage data we use
several reducers instead of several stores

28

Reducer

Reducer

Dispatch
{current state}
{action}

New
State

Store

API (I)

▪ createStore()
– This function creates the central store where the global state is

stored
– The function receives as param a reducer and optionally a initial

state and an enhancer that is used to add middlewares. It returns
the created store.

▪ Methods of the store:
– store.getState(): Returns the actual state of the store
– store.dispatch(action): Emits an action, this is the only way to

modify the state
– store.subscribe(listener): Allows the subscription to the changes

that happen. The listener is called each time that an action is
emitted and a piece of the state may be changed

29

API (II)

▪ combineReducers()
– In Redux we only have a store to handle the global state. It is a

good practice to have several reducers (one for each part/piece of
the state) and with this function we can combine them in a single
reducer that will be passed as param to the function createStore

▪ Why should we have several reducers? Because this way we
can divide our problems in several parts and it is simpler to
modularize the app

30

API (III)

▪ There are more methods that we won´t be using in this
course:

– applyMiddleware()

– bindActionCreators()

– compose()

▪ More info: http://redux.js.org/

31

http://redux.js.org/

Unidirectional data flow

▪ 1 someone calls store.dispatch(action)
– From any part of the app, a component, an Ajax

call, a timeout, …

▪ 2 the Redux store calls the reducer and passes
the actual state and the action
– The reducer can be only one or the result of

combineReducers() call

▪ 3 the reducers are executed and update the state
(each one with the piece of the state that
corresponds) and generate a new state

▪ 4 the store in Redux saves the new state and
notifies each listener that was registered with
store.subscribe(listener)
– The listeners will be able to call store.getState() to

obtain the new state

▪ More info: https://redux.js.org/basics/data-flow

32

Reducers

Store

View

Actions

Server

https://redux.js.org/basics/data-flow

Flux vs. Redux

33

Dispatcher

Stores

View

Actions

Server

Reducers

Store

View

Actions

Server

Redux Lifecycle and API
Enrique Barra

React and Redux
Enrique Barra

¿How is it integrated with React?

▪ We need to transfer from Redux to React:
– The state

– The actions that modify the state

▪ We want also to maintain the immutability of the state
and the functions that modify it

–What is the most similar thing in React => the props

Solution: We create a component <ReduxProvider/> that
passes the state as props to the root component of the app

We will use a library called react-redux (installed via npm)

36

React state vs. Redux state

▪ We can have the whole state in Redux, but we can also leave
part of the state in the React components

▪ React state: state of a component. Each component has
access to its state and can pass it to its children as props.
Usually contains information only relevant to the view

– For example if the component is active or has a dropdown opened.
We don´t want this state to be persistent, it won´t be saved to the
database and when I open my app again I don´t need it, I have a
default state for it

▪ Redux state: state of the app that all components can have
access. Usually contains information that we want to save
between sessions

– For example each part of the state that we want to be persistent,
such as data, etc. We need it when we open the app again

37

React-redux

▪ https://github.com/reactjs/react-redux

▪ Redux is framework agnostic (can be used with Angular,
Ember, …) the join with React is provided as part of a
library

▪ This library has an API that provides two things

– A provider component

– A connect method

▪ API: https://github.com/reactjs/react-
redux/blob/master/docs/api.md

38

https://github.com/reactjs/react-redux
https://github.com/reactjs/react-redux/blob/master/docs/api.md

React-redux – Provider component

▪ <Provider store>

▪ React component that will include our app (our root
component) and will pass it the state as props

▪ Provider Props

– Store (our app store)

– Children (our app)

39

React-redux –connect method

▪ connect([mapStateToProps], [mapDispatchToProps],
[mergeProps], [options])
– Info at: https://github.com/reactjs/react-

redux/blob/master/docs/api.md#connectmapstatetoprops-
mapdispatchtoprops-mergeprops-options

▪ Connect a React component to a Store
▪ Do not modify the component that is passed but returns a new one

to be used (so we will export it instead of our root component)
▪ Params (all optional):

– mapStateToProps: receives the state and returns the props object that
will be passed to the component

– If we specify a component, it will be subscribed to the store. So each
time that the state is modified, mapStateToProps will be called and
will receive new props

40

https://github.com/reactjs/react-redux/blob/master/docs/api.md

▪ We will create a new component called ReduxProvider, it is an
intermediate component between index.js and App.jsx

▪ It renders a React-redux Provider with its store

▪ It will be the rendered component in index.js

▪ In App.jsx we will use React-redux connect method to connect
App with the store using a method mapstatetoprops

41

React-redux – using it

Adding Redux to an existing React app

1. Download the dependencies

2. Define your app state and put it in
app/constants/constants.jsx

3. Create the file app/reducers/actions.jsx

4. Create the file
app/reducers/reducers.jsx

5. Create component
app/components/ReduxProvider.jsx

6. Modify app/index.js

7. Modify app/components/App.jsx

42

npm install --save-dev react-redux redux

State (immutable)

▪ The state of the app is a JS object (immutable, not directly modified)

▪ Example: TO-DO app

43

Step 2: actions.jsx

44

Step 3: reducers.jsx

45

Step 4: ReduxProvider.jsx

46

Step 5: index.js

47

Step 6: App.jsx

import { connect } from 'react-redux';

import { addTodo, setVisibilityFilter, toggleTodo } from './../reducers/actions';

48

Add dependencies:

export default class App extends React.Component {

function mapStateToProps(state) {

return {

todos: state.todos,

visibilityFilter: state.visibilityFilter

};

}

export default connect(mapStateToProps)(App);

Connect the <App/> component with Redux

Now we hace access to this.props.todos and this.props.visibilityFilter in <App/>

To call an action: this.props.dispatch(setVisibilityFilter(‘SHOW_ACTIVE’))

Change the component declaration:

React and Redux
Enrique Barra

Adding Redux to the Tic Tac Toe
Enrique Barra

Adding Redux to an existing React app

1. Download the dependencies

2. Define your app state and put it in
app/constants/constants.jsx

3. Create the file app/reducers/actions.jsx

4. Create the file app/reducers/reducers.jsx

5. Create the rest of reducers app/reducers/…jsx

6. Create component
app/components/ReduxProvider.jsx

7. Modify app/index.js

8. Modify app/components/App.jsx

51

npm install --save-dev react-redux redux

▪ In small apps it is usually the same as the state in App.jsx
– Board: Array

– Turn: String

▪ Define initial state (we will put those values in
app/constants/constants.jsx)
– Empty board

– Turn of playerx

52

2. Define your app state
app/constants/constants.jsx

▪ First action PLAY_POSITION each time a player plays a square

▪ What info does it need?
– The player that did it

– The square that was clicked

53

3. Create the file
app/reducers/actions.jsx

▪ The state has two parts (turn and values)

▪ We will use a reducer for each part

▪ So inside reducers folder we create:

– turnReducer.jsx (to manage turn)

– gameReducer.jsx (to manage values)

▪ In reducers.jsx we will unify/combine all parts to create the global state

54

4. Create the file
app/reducers/reducers.jsx

55

4. Create the file
app/reducers/reducers.jsx

Single Reducer structure

// import {..} …….

function myReducer(state = “DEFAULT_STATE”, action) {

switch (action.type) {

case 'ACTION_NAME':

let newState = Object.assign([], state);

// … Modify newState

return newState; // Return the modified state

default:

return state;

}

}

export default myReducer;

State param is the piece of the
state that corresponds to this
reducer, not the full or global
state

In the action param comes all the
needed information to modify the
state, specially the type of action that it
is

56

We have to change the turn to the other player (the one that has not moved now)

57

5. Create the rest of reducers
app/reducers/turnReducers.jsx

We have to fill in the square with an ‘X’ or a ‘0’

58

5. Create the rest of reducers
app/reducers/gameReducers.jsx

59

6. Create component
app/components/ReduxProvider.jsx

60

7. Modify
app/index.js

import { connect } from 'react-redux';

import {playPosition} from './../reducers/actions';

Add dependencies

export default class App extends React.Component {

function mapStateToProps(state) {

return {

values: state.values,

turn: state.turn

};

}

export default connect(mapStateToProps)(App);

Connect the props of the <App/> component with the Redux state

Now we will have access to this.props.values and this.props.turn in <App/>
Example of call to an action: this.props.dispatch(playPosition(0,0,PLAYER_X))

Change the component declaration

61

8. Modify
app/components/App.jsx

class App extends React.Component {

constructor(props) {

super(props);

//this.state = {..}

this.appClick = this.appClick.bind(this);

}

Delete the initial state from the constructor (now we get it from Redux)

render() {

let text = "Turn of " + this.state.turn this.props.turn;

return (

<div>

<Header text={text} />

<Board values={this.state.values this.props.values} appClick={this.appClick}/>

</div>

);

}

Change the render method to use props instead of state

62

8. Modify
app/components/App.jsx

appClick(rowNumber, columnNumber) {

let valuesCopy = JSON.parse(JSON.stringify(this.state.values));

let newMovement = this.state.turn === PLAYERX ? 'X' : '0';

valuesCopy[rowNumber][columnNumber] = newMovement;

this.setState({

turn: this.state.turn === PLAYERX ? PLAYER0 : PLAYERX,

values: valuesCopy,

moves: this.state.moves +1 });

this.props.dispatch(playPosition(rowNumber, columnNumber, this.props.turn));

}

Modify the method appClick(), now all the logic goes to the reducers

63

8. Modify
app/components/App.jsx

64

8. Modify - app/components/App.jsx

Adding Redux to the Tic Tac Toe
Enrique Barra

Adding Reset action to the Tic Tac Toe

Enrique Barra

▪ We want the reset button to restart the game

▪ We define a new action and modify the reducers so they
consider the RESET case and not only PLAY_POSITION

▪ It won´t need attributes

67

9. Extra - New reset action

68

9. Extra - New reset action
app/reducers/actions.jsx

Create new action called “reset”

We have to empty the board

69

9. Extra - New reset action
app/reducers/gameReducer.jsx

We have to set the turn to the initial player

70

9. Extra - New reset action
app/reducers/turnReducer.jsx

We have to reset the moves to 0

71

9. Extra - New reset action
app/reducers/movesReducer.jsx

We have to reset the moves to 0

72

9. Extra - New reset action
app/reducers/movesReducer.jsx

Modify resetClick() to dispatch the action

resetClick() {

this.props.dispatch(reset());

}

Import the new action

import { playPosicion, reset } from './../reducers/actions';

73

9. Extra - New reset action
app/components/App.jsx

import React from 'react';
import Header from './Header.jsx';
import Board from './Board.jsx';
import Reset from './Reset.jsx';
import { connect } from 'react-redux';
import { playPosition, reset } from './../reducers/actions';

class App extends React.Component {
constructor(props) {
super(props);
this.appClick = this.appClick.bind(this);
this.resetClick = this.resetClick.bind(this);

}
appClick(rowNumber, columnNumber) {

this.props.dispatch(playPosition(rowNumber, columnNumber, this.props.turn, this.props.values));
}
resetClick() {

this.props.dispatch(reset());
}
render() {
let text = "Turn of " + this.props.turn;
return (

<div>
<Header text={text} winner={this.props.winner}/>
<Board values={this.props.values} appClick={this.appClick} winner={this.props.winner}/>
<Reset resetClick={this.resetClick}></Reset>

</div>
);

}
}

function mapStateToProps(state) {
return {

values: state.values,
turn: state.turn,

};
}
export default connect(mapStateToProps)(App);

74

8. Extra new reset action - app/components/App.jsx

Each time we add a new action:

1. Define the action in actions.jsx: type and params

2. Modify the reducers so they take into account the new
action (with a new case statement) if needed

3. Launch the new action from App.jsx or the component
that dispatchs it

75

9. Extra - New reset action
summary

THE END

76

Adding Redux to the Tic Tac Toe
Enrique Barra

