Automatic Test Cases Generation From Formal
Contracts
Extended abstract

Samuel Jiménez Gill[0000-0002-1632-2018] Nfanyel T Capel2[0000-0003—2449-4394]
and Gabriel Olea Qlea?2[0000—0003—-4596-1991]

! SatixFy Space Systems UK, Trident Unit 2, Styal Road, Manchester, M22 5XB, UK
Samuel.Gil@satixfy.com
2 ETSIIT, University of Granada, 18071 Granada, Spain
manuelcapel@ugr.es, gabrieloo@correo.ugr.es

Abstract. Software verification is probably the greatest software engi-
neering challenge for dependable systems and its associated costs grow
with the code size. The use of proofs and tests are the most popular
approaches for evaluating the correctness of a piece of software. Proofs
require pre and postconditions for analysis, which are derived from a con-
tract design, whereas software tests run test cases for specific instances.
The availability of these contracts is particularly relevant to argue about
the traceability of the verification activities. In our work, we use the
formal contracts implemented in Spark/Ada programs to generate test
cases, in this way, we use the most accepted methods for test generation
but leveraging the contracts to achieve these high quality standards. The
evaluation, which uses a wide array of open source examples of Spark con-
tracts, shows a high level of statement coverage and how some contracts
are more friendly to perform this test generation than others.

Keywords: Automatic test cases generation - software testing - formal
methods - software verification

1 Introduction and objective

Software verification is a challenging and labor intensive task for dependable
systems that may reach around 60% of the overall software development cost.
Thus, the software industry has shown a significant interest in reducing this cost
being automation the most promising solution. Software verification can be car-
ried out either by code review, proof or testing [1].

Code review is normally the least preferred approach as it involves some man-
ual and sometimes informal justification. On the one hand, software proof applies
a deductive reasoning by means of formal specification analysis [1]. Such formal
specifications generally consist of preconditions that input data must meet and
output data postconditions. These verification conditions along with the imple-
mentation are used by a theorem prover to determine whether postconditions



Samuel Jiménez Gil, Manuel I Capel, and Gabriel Olea Olea

are always satisfied.

On the other hand, software testing is an intrinsic deductive reasoning which
consists of collecting observations from the real hardware or an equivalent sim-
ulator. This approach is based on the construction of test cases from the input
data space, paired with their expected outputs which are compared with its ac-
tual outputs to determine whether the test passes or fails. The resulting evidence
serves to argue about the confidence in the program correctness.

Proof and testing have their own pros and cons, a software proof is able to
conclude correctness for all cases, but this requires a ‘design by contract’, which
can be costly and requires a substantial effort from the point of view of a com-
pany value generation. In addition, the analysis of software correction performed
by proofs is based on some assumptions about the hardware, which may not be
always true, e.g., absence of hardware bugs or memory stability, which can suffer
corruption due to radiation.

By contrast, software testing is able to collect representative observations
from a real hardware platform. Nonetheless, it cannot generally cover the entire
input space leaving some use cases or pieces of code untested. Despite so, soft-
ware testing is often deemed the gold-standard in at least the aerospace domain

[2].

Automated approaches to generating test input data have gained momen-
tum in recent years, and only a few works focus on generating true test cases,
i.e., providing input data and, in addition, expected results in the form of test
cases or test suites [5]. Most of these approaches are code-driven, meaning that
source code is read to generate only test data in a non TDD-methodological
way, unstructured manner. From our point of view, these approaches are not
acceptable for certain software quality standards, as they cannot be traced back
to requirements.

The use of formal contracts provides the required traceability to require-
ments. Moreover, the technology implemented in Spark/Ada programming lan-
guage — perhaps the most popular programming language for safety-critical ap-
plications — enables to integrate the formal contracts inside the specification of
functions or procedures.

We hypothesize that ‘design by contract’ effort can be useful for both testing
and proving dependable software. The objective of our work is to investigate
a method to use these formal contracts to derive test cases using equivalence
class partitioning supplemented with parameter domain boundary analysis and
negated precondition tests, resulting in a solid testing method for achieving
software quality standards.



Automatic Test Cases Generation From Formal Contracts
2 Software Testing Current Trends

Software testing is a broad area and when it comes to requirements-driven test-
ing, probably the most popular testing techniques are: equivalence class parti-
tioning, boundary analysis, decision tables and combinatorial testing [2]. To the
best of our knowledge, software quality standards in the space [4], aerospace
[2] and automotive [3] are comfortable with equivalence class partitioning aug-
mented with boundary analysis [2]. This approach is based on spliting the input
space of a program into disjoint sets depending on the expected results (output)
and then choosing test cases located somewhere within and/or at the boundaries
of these sets [2].

There are a few approaches to test vector generation [5] and amongst them,
we deem Constraint-Based Testing as the most promising strategy for this prob-
lem domain given its accuracy. Constraint-Based Testing requires collecting con-
straints from the software under test so as to analyze them with a constraint
solver later. This resulting solution (if there exists) is the test vector or test case.

The idea of combining test cases from Spark/Ada contracts is not new, in
fact Comar et al. [7] investigate the idea of incorporating proof and testing as
part of the verification system in Ada toolchain. Even though there are some
interesting arguments about such an integration, the test cases in the single case
study were produced manually.

Later on Sun et al. [6] apply a Constraint-Based Test Generation method
using Modified Condition / Decision Coverage (MC/DC) with boundary analysis
to derive test cases from Spark contracts. Unfortunately, their method does not
seem to support universal or existential quantifiers usually available in Spark
contracts. Their evaluation is also limited, given that only two industrial case
studies were performed, no MC/DC in the software under test was measured,
despite the capability of their tools, and the statistical significance could not be
determined.

3 Method and Findings

Our approach starts from Constraint-Based Testing. Then, by reading the input
data domain together with the precondition constraints, these are transformed to
constraints to the input data or test vector. The postconditions are then mapped
in similar way to the pass/fail criterion for the test cases. Based on these def-
initions, our test generation algorithm selects the test cases using equivalence
class partitioning supplemented with parameter domain boundary analysis and
negated precondition tests.

The evaluation measures the effect of our test generation in: 1) the resulting
statement and branch coverage, which are common metrics for the completeness



Samuel Jiménez Gil, Manuel I Capel, and Gabriel Olea Olea

of software testing, 2) the efficiency which is defined as the number of test cases
per time unit, and 3) the number of pass/fail test cases. Additionally, a random
test generator is included for comparison purposes.

The examples analyzed consists of representative open-source benchmarks
exhibiting a wide array of formal contracts ranging from first order logic such as
binary search to safety-critical signaling systems. The results display in general
a high level of statement coverage from our method along with a high number of
passed test cases. Efficiency is compared to that obtained using only the random
test generator, and the results are discussed.

Lastly, some results are presented that complement the static analysis proof
by showing how both techniques can work in conjunction. Another interesting
aspect discussed in this section is why some formal contracts are more friendly for
test generation than others and how these results can motivate more compatible
contracts by design.

4 Conclusion

Automation is a very promising and probably the only solution to the escalation
of software verifications costs. Automatic test cases generation is a major chal-
lenge that can help to alleviate this problem. Despite the substantial effort, a
design by formal contracts not only can provide proof of code but it also provides
traceability to the requirements. These contracts can be used to generate test
cases as some works, and this one demonstrate.

Our approach has managed to establish a way in which formal contracts
can generate test cases using a very accepted method in the software quality
standards. Results show how our approach stresses the code substantially, the
reason why some contracts are not that friendly to this test generation method
and how proof and testing can work in conjunction.

References

1. John W. McCormick and Peter C. Chapin, Building High Integrity Applications
with SPARK, Cambridge University Press, (2015).

2. Leanna Rierson, Developing Safety-Critical Software: A Practical Guide for Aviation

Software and DO-178C Compliance, CRC Press, (2013).

1SO26262, Road Vehicles — Functional Safety, (2018).

ECSS-E-ST-40C, Space engineering: Software, (2009).

5. Samuel Jiménez Gil, Constraint-Based Testing and Tail Tests for Measurement-
Based Probabilistic Timing Analysis. PhD thesis, University of York (2020).

6. Youcheng Sun et al, Functional Requirements-Based Automated Testing for Avion-
ics. CoRR, (2017)

7. Cyrille Comar et al, Integrating Formal Program Verification with Testing, Open-
Do. 2012.

-



