
STRAST

The origins of the Open Ravenscar
Kernel (ORK)

Juan A. de la Puente

Universidad Politécnica de Madrid

XXII Jornadas de Tiempo Real © 2023 Juan A. de la Puente

Content

• Background: Ada9X & GNAT

• The Laredo 95 Seminar: a bit of inspiration

• The Ravenscar profile

• A first attempt: JTK

• The ORK project

• The project team

2

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

INTERNATIONAL STANDARD ISO/IEC 8652:1995(E)

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION

Information technology — Programming languages — Ada
[Revision of first edition (ISO 8652:1987)]

Language and Standard Libraries

Copyright  1992,1993,1994,1995 Intermetrics, Inc.

Ada 9X & GNAT
• In 1988 the Ada 9X project was launched by the AJPO in

order to revise the original ANSI/MIL standard and make it an
ISO standard

• The result was Ada 95

- packages, generics, inheritance

- protected types, real-time annex

- fi

• At the same time it funded a NYU team to develop an open
source compilation system for Ada 9X

• The result was GNAT

- free, open source

- very effi

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

M. González Harbour and J.A. de la Puente (Eds.): Ada-Europe'99, LNCS 1622, 250-262, 1999.
© Springer-Verlag Berlin Heidelberg 1999

An Application (Layer 7) Routing Switch with Ada95
Software

Mike Kamrad

Top Layer Networks, Inc.
2400 Computer Drive

Westborough MA 01581
USA

+1.508.870.1300 x139
kamrad@TopLayer.com

Abstract. The Top Layer Networks AppSwitchTM is a coordinated hardware and
software Layer 7-application switch designed to provide Application Control
for data communication networks by automatically prioritizing network traffic
according to the user and the application that is generating the messages. Ada
was chosen as the programming language for AppSwitchTM software because it
possessed the best combination of language features to provide both high
reliability and portability, specifically, language. The AppSwitchTM is a
multiprocessor system and the software architecture is designed to take
advantage of Ada’s distributed system features as Distributed System Annex
implementations mature. Top Layer faced significant obstacles to make Ada
succeed: a huge learning curve, an incomplete Ada tool chain for the
processors in the system and the construction of the Ada runtime system to
efficiently support the Ravenscar.

1 Introduction

Top Layer Networks (formerly Top Layer) is a new data communication product
company, whose new product, the AppSwitchTM 2000, uses Ada as its implementation
language. Ada is not the traditional programming language for building data
communication product software. As such, Top Layer had to overcome significant
obstacles to realize its full benefits. The goal of this paper is to describe the software
architecture of the AppSwitchTM and how well Ada supported the architecture and to
reflect on the Top Layer experience in effectively using Ada and overcoming
obstacles to its effective use. The paper is divided as follows: Section 2 gives a brief
overview of the AppSwitchTM 2000, in particular the software architecture of the
AppSwitchTM 2000. Section 3 describes why Ada was chosen, an overview of the
software development environment and how Ada features enhanced that software
architecture. Section 4 describes the obstacles Top Layer faced and the lessons
learned.

A bit of inspiration
• The Laredo Seminar (1995)

 95/07/17-21:  
Real-Time Systems Programming: Impact of the new Ada 95 and POSIX
Standards

Laredo, Cantabria, Spain
A one week course on Ada 95 and POSIX to be held (in English) by a University in the north of Spain: a service to the
international Ada community (at just a symbolic price).

Mike Kamrad 

• More effi 

http://ctrhp3.unican.es/Laredo95.html
http://ctrhp3.unican.es/Laredo95.html

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

The Ravenscar profile
• 8th IRTAW 1997 

A. Burns, A. Wellings 

Session summary: Tasking profi
 

• Revised and refi

B. Dobbing, A. Burns 
fi 

and Ada-Europe 98

A. Burns, B. Dobbing & G. Romanski 
fi

N b111o

O

Volume XVII Number 5 September/0ct0ber1997
Proceedings of the 8th International Real-Time Ada Workshop

Newsletter Info
Editorial Policy . 1

Preface-Andy We]lingr . 3

Workehop Par t i d p a n t s . 4

Session Summaries
Tasking Profiles . 5
Distributed and Fault Tolerance Systems . 8
Outstanding Language Issues . 1 l
Object-Oriented Programming and Heal-Time . 16

Pos i t ion Papers
Components for the Implementat ion of Fixed Priority Beal-Time Systems in Ada-

Alejandro Alonso, Juan AJttonio de la Puente, and Ken Tindell 18
Feature Interations with Dynamic Priorities - Alan Burns and AndyWellings . 24
Restricted Tasking Models - Alan Burns and Andy Wellings . 27
Developing Heusable Multi - Tasking Components Using Object-Orlented Techniques in Ada - Patrick de Bondeli 33
Communication and Disu' ibution Tools for Embedded Distributed Applications - Pierre Dissaux,

Laurent Pautet, Yvon Kermarrec, and Dominique Le Campion . 40
T-SMAHT - Task-Safe, Minimal Ada Bealtime Toolset - Brian Dobbing and Marc Richard-Foy 45
Future Directions in Ada - Distributed Execution and Heterogeneous Language Interoperability Toolsets - Anthony Gargaro,

Gary Smith, Honald J. Therlault , Hicherd A. Volts, and Raymond Waldrop . 51
Implementing Robot Controllers under Heal-Time POSIX and Ada - Michael Gonzalez Harbour, J.M. Drake Moyano,

M. Aldea Hivas, and J. Garcia Fernandez . 57
Using Analytical Approaches for High Integrity Ada95 Systems - Stephen MicheU, Dan Craigen, and Mark Saaltink 65
Object-Oriented Real-Time Systems Developed with a Hybrid Distributed Model of Ada 95's Built-in DSA Capability

and CORBA- Scott Moody . 71
Implementing CIFO Using Ada 95 and POSIX - Richard Powers . 77
Using Compliance Notation to Verify Ada Tasking - David Tombs . B3
Benehmarldng of Real-Time Distributed Systems: Hartstone Distributed Benchmark Implementat ion -

Brian Ujvary, Nick Kamenoff, and Jorge Diez-Herrerc . 811
Relmplemanting a Multiprocess Distributed Paradigm for Real-Time Systems in Ada 95 - Steve Vesta], Laurent Guerby,

Robert Dewar, David McCormsll, and Bruce Lewis . 93
Task Terminat ion and Ada 95 - Andy Welling~ Alan Burns, and Offer Pazy . 100
Fault Tolerance in Distributed Ada 95 - T h o m a s Wolf . 106

A Bimonthly Publication of SIGAda,
the ACM Special Interest Group on Ada

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

A first attempt: JTK

• José's Tasking Kernel (José Ruiz' Master)

- a tasking kernel for GNAT running on ix86

- not yet fully Ravenscar

• 9th IRTAW 1999 
 
 

 

• ESA (Tullio Vardanega) showed interest in

- porting to ERC32 (SPARC) architecture

- Ravenscar compliance

O,

Volume XIX Number 2 June1999

Table of Contents

Meet ings
SIGAda '99 .. I
I 0* International Real-Time Ada Workshop - Call for Participation .. 5

Proceedings o f the 9 '~ Internat ional R e a l - T i m e A d a W o r k s h o p ... 6
Preface - Alan Bums .. 8
Workshop Participants ... 9

Sess ion S u m m a r i e s
Fault Tolerance ... 10
The Ravenscar Profile and Implementation Issues ... 12
Distributed Ada and Real-Time ... 15
N e w Language Features and other Language Issues .. 19

Posi t ion Papers
Replica Management in Real-Time Aria 95 Applications - L. M. Pinho and F. Vasques ... 21
The Ravenscar Tasking Profile - Experience Report - B. Dobbing and G. Romanski ... 28
Transparent Replication for Fault Tolerance in Distributed Ada 95 - T. Wolf. ... 33
Dynamic Ceiling Priorities and Ada 95 - J. Real and A. Wellings .. 41
Combining Tasking and Transactions - J. Kienzle .. 49
Extendable, Dispatchable Task Communicat ion Mechanisms - S. Michell and K. Ltmdqvist ... 54
$irnpleGraphics: Tcl /Tk Visualization o f Real-Time Multi-Threaded and Distributed Application - S. A. Moody, S. Kwok, and
D. Kar r ... 60
Pr ior i t iz ing Remote Procedure Calls in Ada Dis t r ibuted systems - J. J. G. Garcia, M. G. Harbour .. 67
Real-Time Programming with GNAT: Specialised Kernels versus POSIX Threads - J. A. de la Puente, J. F. Ruiz, and
L M. Gonzaleg-Barahona ... 73
How to Verify Concurrent Ada Programs: The Application o f Model Checking - A. Burns and A. J. Wellings 7g
An Experimental Testbed for Embedded Real Time Ada 95 - W. M. Walker, P. T. Woolley, and A. Burns 84
Distributed Programming with Intermediate IDL - G. W. Smith and R. A. Volz ... 90
A Linux Kernel Module Implementation o f Restricted Ada Tasking - H. Shen and T. P. Baker .. 96

A Quarterly Publication of SIGAda,
the A CM Special Interest Group on Ada

Real-Time Programming with GNAT:
Specialised Kernels versus POSIX Threads

Juan A. de la P n ~ t c 1, Jos~ F. R u i z l, and Jesds M. Gon~_Alez-Barahona 2,

l U n i v e r s i d a d P o l i t t c n i c a de M a d r i d

2Univers idad Car los III de M a d r i d

E-maJh jpuente@dit, upm. es, j fruiz@dit, upm. es, jgb@computer, orq

Abstract

The fact that most o f the GNAT ports are based on non real-
time operating systema leads to a reduced usability for
developing real-time systems. Otherwise, existing ports
over real-time operating systems are excessively complex,
since GNAT uses only a reduced set of their functionality,
and with a very specific semantic. This paper describes the
implementation o f a low-level tusking support for the GNAT
run-time. In order to achieve a predictable real-time
behaviour we have developed a very simple library, built to
f i t only the GNAT tasking requirements. We have also
designed a bare machine kernel which provides the
minimum environment needed by the upper layers.

Keywords: Ada-95, GNAT, run-time system, real-time
kernels

1. Introduction

The development of GNAT was a decisive step towards the
widespread availability of an efficient, high quality
compiling environment to Ada pregrammers. The fact that
GNAT is free software is of great interest for researchers,
since it allows new developments from existing source
code. "

Although GNAT provides an effective, high quality
compiling environment for Ada 95, its usability for real-
time systems development is limited, as most of the GNAT
ports are based on non real-time operating systems.
Although all GNAT ports implement most of the Annex C
and D functionality, many important features, such as true
pre-emptive priority scheduling, monotonic time, ceiling
locking, and kernel metrics, are not provided as specified in
the LRM. As a result, most GNAT implementations cannot
be used to program real-time systems with a predictable
behaviour.

Looldug at GNAT ports over real=time operating
systems, we can cite RTEMS[8], a flee real-time executive
with a POSIX interface and support for multiprocossor
systems. But it has been designed for a generic use, and
there is a big overhead and an excessive complexity when
using it as low-level support for the GNAT tasking system.

The most common way of implementing GNARL 1 is on
top of native threads (usually POSIX threads or Pthreads
for short) for the given architecture. But GNAT tasking
implementation is very complete and specific, and when
implementing GNARL on top of Pthroads there is a high
overhead motivated by the simi]ar level of abstraction of
Ada tasks and Pthreads[4]. Aside from the loss of
performance, it increases the complexity, leading to a
difficult measuring and bounding of the kernel metrics.
Indeed, in the case of many embedded systems a fidl-
blown imple~nentation of Pthreads is usually considered to
be too expensive, and then the existence of a reduced and
simple thread support could be of great help.

Therefore, our purpose is to develop a very simple and
efficient real-time support for the GNAT tasking system,
adapted to its requi~ments. By not requiring support for
the more complex thread features, this approach permits an
implementation with very tight efficiency and timing
predictability requirements. The library that implements
the low level tasking (we call our library'JTK from Jose's
Tasking Kernel) provides GNARL semantics and is written
in Ada 2. The kernel that interacts with the underlying
hardware is written in C, with a small amount of assembly
code.

Our intention is to provide a fleely available test-bed for
experimentation in language, compiler, and run-time
support for developers of real-time embedded systems.

1. G N U Ada Runt ime Library.
2. About 1000 lines o f code, not includin S test programs.

Ada Letters, June 1999 Page 73 Volume XIX, Number 2

XXII Jornadas de Tiempo Real © 2023 Juan A. de la Puente

The ORK project
• ESA contract 1999–2000

- UPM (+ URJC)

- CASA

- U. York

• GNAT/ORK 1.0 released in June 2000

- hosted at GNU/Linux, targeted at ERC32 (SPARC v7)

- developed according to ESA software standards (ECSS-E-40)

• Further extensions

- porting to other platforms (LEON & XtratuM)

- verification & metrics

- application examples (OBOSS)

• Eventually merged with ACT's GNAT for LEON

... and went into space

7

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

ORK architecture

© 2023 Juan A. de la PuenteXXII Jornadas de Tiempo Real

First dissemination papers
An Open Ravenscar Real-Time Kernel for

GNAT!

Juan A. de la Puente1, José F. Ruiz1, and Juan Zamorano2

1 Departamento de Ingenieŕıa de Sistemas Telemáticos
Universidad Politécnica de Madrid, E-28040 Madrid, Spain

jpuente@dit.upm.es, jfruiz@dit.upm.es
2 Departamento de Arquitectura y Tecnoloǵıa de Sistemas Informáticos

Universidad Politécnica de Madrid, E-28660 Madrid, Spain
jzamora@datsi.fi.upm.es

Abstract. This paper describes the architecture of ORK, an open
source real-time kernel that implements the Ravenscar profile for the
GNAT compilation system on a bare ERC32 computer. The kernel has
a reduced size and complexity, and has been carefully designed in order
to make it possible to build reliable software for on-board space applica-
tions. The kernel is closely integrated with the GNAT runtime library,
and supports Ada tasking in an efficient and compact way.

1 Introduction

The Ravenscar Profile [4,6] is the best known result of the 8th International
Real-Time Ada Workshop (IRTAW8). It defines a subset of the tasking features
of Ada which can be implemented using a small, reliable kernel. The expected
benefits of this approach are:

– Improved memory and execution time efficiency, by removing features with
a high overhead.

– Improved reliability, by removing non-deterministic and non analysable fea-
tures.

– Improved timing analysis, by removing non-deterministic and non-analysable
features.

The tasking model defined by the profile includes tasks and protected types
and objects at the library level, a maximum of one protected entry with a simple
boolean barrier for synchronization, a real-time clock, absolute delays, preemp-
tive priority scheduling with ceiling locking access to protected objects, and
protected procedure interrupt handlers, as well as some other features. Other
features, such as dynamic tasks and protected objects, task entries, dynamic
priorities, select statements, asynchronous transfer of control, relative delays, or
! This work has been funded by ESA/ESTEC contract no. No.13863/99/NL/MV.

H. B. Keller and E. Plödereder (Eds.): Ada-Europe 2000, LNCS 1845, pp. 5–15, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

The Design and Implementation of the Open Ravenscar Kernel

Juan A. de la Puente Juan Zamorano José Ruiz Ramón Fernández Rodrigo García
Department of Telematics Engineering
Technical University of Madrid, Spain
E-mail: jpuente@dit.upm.es

Abstract

This paper describes the design and implementation of
the Open Ravenscar Kernel (ORK), an open-source real-
time kernel of reduced size and complexity, for which users
can seek certification for mission-critical space applica-
tions. The kernel supports Ada 95 tasking on an ERC32
(SPARC v7) architecture in an efficient and compact way.
It is closely integrated with the GNAT runtime library and
other tools.

1. Introduction

The Open Ravenscar Real-Time Kernel (ORK) [10, 11]
is a tasking kernel for the Ada language [2] which provides
full conformance with the Ravenscar profile [6, 4, 7] on
ERC32-based computers. ERC32 is a radiation-hardened
implementation of the SPARC V7 architecture, which has
been adopted by the European Space Agency (ESA) as
the current standard processor for spacecraft on-board com-
puter systems [12].
ORK supports the restricted version of Ada tasking de-

fined by the Ravenscar profile, which includes static tasks
(with no entries) and protected objects (with at most one
entry), a real-time clock and delay until statements, and pro-
tected interrupt handler procedures, as well as other tasking
features.
The kernel is fully integrated with the GNAT compila-

tion system. Debugging support for the ORK kernel, in-
cluding tasking, is based on an enhanced version of the
GDB debugger and the DDD graphic front-end. The dis-
tribution includes an adapted version of GNAT hosted on
GNU/Linux workstations and targeted to ERC32 bare com-
puters, the kernel itself, adapted version of GDB and DDD,
and some additional libraries and tools. It is freely available
as an open source product, with a GPL license1.

This work has been funded by ESA/ESTEC contract no.
No.13863/99/NL/MV.

1ORK and its associated software can be downloaded from http://

This paper describes the design and implementation of
ORK. The rest of the paper is organised as follows: Sec-
tion 2 describes how the Ravenscar profile can be imple-
mented in GNAT. Section 3 describes the ORK design and
section 4 deals with some implementation issues. Finally,
some conclusions and plans for the near future are included
in section 5.

2. Support for the Ravenscar profile in GNAT

2.1. Compile-time checking

Most of the Ada subset defined by the Ravenscar pro-
file can be checked at compile time by using an appropri-
ate set of restriction identifiers with the pragma Restrictions
(ALRM, D.7, H.4). However, not all the Ravenscar restric-
tions can be enforced by standard identifiers, and thus a
number of additional restriction identifiers have been pro-
posed at the last IRTAW meetings in order to support the
profile [7].
The most recent versions of GNAT (from 3.12 on) have

included most of the non-standard Ravenscar restrictions
as implementation-specific pragmas. However, there are a
couple of restrictions that are not implemented in GNAT or
are implemented in a slightly different way than specified
by the profile:

The Ravenscar restriction Simple_Barrier_Variables is
replaced in GNAT by
Boolean_Entry_Barriers. The semantics of this restric-
tion is the same as the original one.

The Ravenscar restriction Max_Entry_Queue_Depth
=> N (with N 1 for Ravenscar compliant programs)
is replaced in GNAT by No_Entry_Queue. In this case,
the semantics is the same, but the restriction name is
somewhat misleading, as there may still be one task
waiting on an entry barrier to be opened (i.e. a queue
with just one task).

www.openravenscar.com

Ada-Europe 2000 (Potsdam) IRTAW10 (´Las Navas del Marqués)

ORK: An Open Source Real-Time Kernel for On-Board Software
Systems

Juan A. de la Puente José F. Ruiz Juan Zamorano Rodrigo García
Ramón Fernández-Marina

Departamento de Ingeniería de Sistemas Telemáticos
ETSIT, Universidad Politécnica de Madrid

Ciudad Universitaria, E-28040 Madrid, Spain
Phone +34 9 13 36 73 42; Fax +34 9 13 36 73 33

Abstract

Ada tasking is a powerful abstraction mechanism for developing concurrent systems. However, many implemen-
tations of concurrent tasking have been seen as potentially unsafe for critical systems because of their high degree of
indeterminism. The Ravenscar profile is a subset of Ada 95 tasking with purpose of providing a basis for the implemen-
tation of certifiable critical systems. ORK is an open-source real-time kernel which provides full conformance with the
Ravenscar profile on ERC32 computers. The kernel has a reduced size and complexity, and has been carefully designed
to allow the building of reliable software for on-board space applications. This kernel is integrated in a cross-compilation
system based on GNAT 3.13, including a tasking-aware version of GDB.

1 Introduction
Mission-critical on-board software has usually been developed on top of a cyclic executive that invokes the execution of
application tasks according to a predefined static schedule. There are thus no concurrent threads of execution, and the
application code is made of a set of purely sequential procedures.

This approach leads to simple, robust implementations, and provides a deterministic time behaviour which has often
been considered a requirement for critical real-time systems. However, as the functionality and complexity of on-board
software increases, and there is more and more pressure for shortening development times and reducing costs, while
keeping up with critical reliability requirements, its low-level nature and lack of flexibility make it less appropriate. As a
consequence, more attention is being devoted to higher level, abstract development methods that include concurrency as
a means of decoupling application tasks and making software easier to design and test [20].

Indeed, many implementations of concurrent tasking have been seen as potentially unsafe for critical systems because
of their high degree of indeterminism, which may make programs difficult to validate. This has led to either completely
banning tasking for critical software applications, which is the traditional approach, or to the more flexible approach of
building specialised kernels with reduced functionality. By limiting the way tasks are executed and synchronized, it can
be expected that concurrent systems can be analysed and tested, so that safe concurrent systems can be built in a way that
has significant advantages over cyclic executives from the point of view of flexibility and structuring [13].

Ada [1] is the language of choice for many critical systems due to its careful design and the existence of clear guide-
lines for building safe systems [12]. While the first approaches to developing safe Ada software did not make use of
Ada tasking [10, 4], recent advances in real-time systems timing analysis methods [2] have paved the way to safe tasking
in Ada. The Ravenscar profile [3, 6] is a subset of Ada 95 tasking that was defined at the 8th International Real-Time
Ada Workshop (IRTAW8) with purpose of providing a basis for the implementation of certifiable critical systems. The
first implementation of the profile, Aonix’ Raven, has indeed shown the feasibility of the approach and the possibility of
building certifiable applications based on it [8].

Based on this early experience, the European Space Research and Technology Centre (ESTEC) launched the Open
Ravenscar Real-time kernel (ORK) project in September 1999. The aim of the project is to develop an open-source kernel,
compliant with the Ravenscar profile, for its current standard on-board computer, ERC-32, which is a radiation-hardened

The work described in this paper is being carried out under ESA/ESTEC contract no. No.13863/99/NL/MV.

1DASIA 2000 (Montreal)

XXII Jornadas de Tiempo Real © 2023 Juan A. de la Puente

Project team
UPM

Juan A. de la Puente

Juan Zamorano

Alejandro Alonso

José Francisco Ruiz

Ramón Fernández Marina

Rodrigo García

Miguel Ángel Ajo

Ángel Álvarez

URJC

Jesús González Barahona

Vicente Matellán

Andrés Arias

Juan Manuel Dodero

José Centeno

Pedro de las Heras

CASA

Andrés Borges

Juan Carlos Morcuende

Jesús Borruel

University of York

Alan burns

Andy Wellings

ESA/ESTEC

Jean-Loup Terraillon

Jorge Amador

Tullio Vardanega

10

11

